
III. MAGYAR SZAMITOGEPES 
GRAFIKA ÉS GEOMETRIA. 

KONFERENCIA \

BUDAPEST
2005. NOVEMBER 17-18

'S

'* 5

 ̂ .r í*

-  ~ Szerkesztette:__
Szirmay^alos'Eá'szló



/T^y, y r

Előszó

Lectori Salutem. Ez a kiadvány a Neumann János Számítógép-tudományi Társaság 
Számítógépi Grafika és Geometria Szakosztálya (NJSZT-GRAFGEO) által szervezett 
Harmadik Magyar Számítógépes Grafika és Geometria Konferencia cikkeit tartalmazza. 
A konferencia a számítógépes grafika hazai és magyar kötődésű külföldi művelőinek 
seregszemléje, amely a 2002. évi első és a 2003. évi második konferenciát követi a 
sorban. 2004.-ben úgy döntöttünk, hogy a továbbiakban nem konkurálunk a 
képfeldolgozók és alakfelismerők rendezvényével, hanem a KÉPAF konferenciával 
évenkénti váltással, a Grafika és Geometria konferenciát is kétévenként rendezzük meg. 
így a számítógépes grafika, képfeldolgozás, alakfelismerés és geometria határterületeire 
is ráirányíthatjuk a közönség figyelmét.

A benyújtott cikkeket a szereplő témák elismert képviselői bírálták el. Az elfogadott 
cikkek a számítógépes grafika sokféle területét érintik, mint például a természeti 
jelenségek szimulációját, a gépi látás eljárásokat, a számítógépes grafika orvosi 
felhasználását, a valós idejű képszintézis problémáit, valamint a számítógépes 
geometriát és rekonstrukciót. Ez a szerteágazó gyűjtemény a bizonyítéka annak, hogy a 
számítógépes grafikának és a geometriai modellezésnek Magyarországon is rangos 
műhelyei alakultak ki.

A konferenciát a Neumann János Számítógép-tudományi Társaság, a BME 
Irányítástechnika és Informatika Tanszéke és a Mecenatúra Alapítvány anyagilag 
támogatta. A kiadvány nyomdai előkészítése Umenhoffer Tamás munkája. A címlapot 
Szécsi László Maya modellező program felhasználásával és a saját, DirectX alapú 
képszintézis rendszerével alkotta meg. A konferencia honlapját Czuczor Szabolcs 
készítette el. A konferencia szervezésében még Lazányi István és Tóth Balázs vettek 
részt.

Ajánljuk ezt a kiadványt mindenkinek, aki a számítógépes grafika és geometria jelenlegi 
kérdéseivel és a magyar műhelyek tevékenységével meg szeretne ismerkedni.

Budapest, 2005. október 24.

Szirmay-Kalos László és Renner Gábor



Résztvevő intézmények

ArchiData Kit.
BME Geometria Tanszék
BME Irányítástechnika és Informatika Tanszék,
BME Méréstechnika és Információs Rendszerek Tanszék 
Debreceni Egyetem Matematikai Intézet 
Debreceni Egyetem Informatikai Kar 
Digic Pictures
Digital Elite/Waveband, USA
Egri Eszterházy Károly Főiskola Matematikai és Informatikai Intézete 
ELTE Analízis Tanszék 
ELTE Informatikai Kar 
Geomagic Hungary Kft.
Miskolci Egyetem Ábrázoló Geometria Tanszék 
MTA SZTAKI
Pázmány Péter Katolikus Egyetem Informatika Kar 
Rovira i Virgili University, Tarragona, Spanyolország 
Semmelweis Egyetem Radiológiai Intézete 
Szegedi Egyetem
University of Girona, Spanyolország 
University of Twente, Hollandia 
VerAnim Kft.
Veszprémi Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék

ISBN 963-421-593-9

II



Tartalomjegyzék

Invited talk
Marinov Gábor;
Számítógépes animációs filmek készítése a Digic Pictures-nél,
avagy a Warhammer univeirzum életre keltése............................................................ 1

Natural phenomena
Kovács Levente, Szirányi Tamás:
Painterly rendering of images and real paintings with SV support.............................  2
Ismael Garcia, Mateu Sbert, Szirmay-Kalos László:
Tree rendering with billboard clouds..........................................................................  9
Ruttkay Zsófia, Fazekas Attila, Rigó Péter
Hungarian talking head acc ording to MPEG-4...........................................................  16
Umenhoffer Tamás, Szirmay-Kalos László
Rendering fire and smoke with spherical billboards..................................................  24

Machine Vision
Hajder Levente
An iterative improvement o f the Tomasi-Kanade factorization..................................  30
Jankó Zoltán, Evgeny Lomonosov, Dmitry Chetverikov
Building photorealistic models using data fusion........................................................ 37
Czuczor Szabolcs
Road traffic monitoring by video processing..............................................................  43
Kertész Csaba
Enhanced video capture support in OpenCV under Linux.........................................  50

Medical applications
Takács Barnabás, Szijártó Gábor, Benedek Balázs
Virtual patient for anatomical ultrasound guidance....................................................  55
Csébfalvi Balázs
Reconstruction of optimally sampled volume data.....................................................  63
Koloszár József, Szirmay-Kalos László, Taiján Zsolt, Jocha Dávid
Computer aided diagnosis based on second derivatives of the volume data..............  71

III



Real-time rendering
Szécsi László
Texture atlas generation for GPU algorithms..........................................................  79
Lazányi István, Szirmay-Kalos László
Real-time indirect illumination gathering with localized cube maps..........................  86
Szántó Péter, Fehér Béla
Scalable rasterizer unit................................................................................................. 94
Aszódi Barnabás, Szirmay-Kalos László
Shooting soft shadow photons on the GPU...............................................................  100
Kovács Péter Tamás, Antal György
Soft-edged stencil shadow in CAD applications.......................................................  105

Geometry
Salvi Péter, Várady Tamás
Local fairing of free form curves and surfaces.......................................................... 113
Renner Gábor
Computing smoothness parameters for the reconstruction of surfaces.....................  119
Szilvási-Nagy Márta
Removing errors from triangle meshes by slicing....................................................  125
Terék Zsolt, Várady Tamás
Digital shape reconstruction using a variety of local geometric filters.....................  128
Várady Gergely, Várady Tamás, Zombori Tamás
Industrial styling based on free-form curve network................................................  134
KÓS G é z a
A general construction for barycentric coordinates in 3D polyhedra.......................  140
Hajdú András, Hajdú Lajos, Tóth Tamás
Properties and applications of neighborhood sequences...........................................  148
Nagy Benedek
Transformations of the triangular grid......................................................................  155
Juhász Imre, Hoffmann Miklós
Interpolation by low degree Bézier-curves with different parameter sets................  163

Graphics systems
Tóth Balázs
Real-time ray tracing with image coherence.............................................................. 164
Ruttkay Zsófia, Vánca Róbert
A real-time animation engine for H-anim characters................................................  169

Pongrácz Ferenc, Bárdos! Zoltán
Computer framework for organizing 3-dimensional graphical environment
in image-guided planning and navigation.................................................................  176

IV



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Számítógép animációs filmek készítése a Digic Pictures-nél, 
avagy a Warhammer univerzum életre keltése

Marinov Gábor

Digic Pictures 
www.digicpictures.com

Abstract
A Digic Pictures stúdió számítógépes animációs filmek és digitális filmtrükkök készítésével foglalkozik, korábbi 
munkái közé tartozik 60 digitális trükk jelenet a Terminátor 3 mozifilmhez és a díjnyertes Exigo animációt Az 
elmúlt években a Digic 3d-s animációs filmek készítésére koncentrált, munkafolyamatait, eszközeit ez irányban 
fejlesztette. A filmekben szereplő lények, díszletek modelljeinek, textúráinak elkészítését, azok megmozgatását 
és a filmek képkockáinak előállítását egy jól bővíthető, rugalmas rendszerbe foglalta. Mindez lehetővé teszi, 
hogy a cég művészei a valódi képi tartalom előállítására koncentráljanak. A Digic előadása bemutatja a 3d-s 
filmkészítés valódi produkciós körülmények között kialakított munkafolyamatait, technikai hátterét, mindezt a nép
szerű Warhammer fantasy világhoz kapcsolódó új filmjein keresztül.

http://www.digicpictures.com


Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Painterly Rendering of Images and Real Paintings With SVG
Support

Levente Kovács,* ̂  and Tamás Szirányi’^

’ Department of Image Processing and Neurocomputing, University of Veszprém, Veszprém, Hungary 
 ̂Analogical Comp. Lab., Comp, and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary

Abstract
We propose the use o f 2D non-photorealistical painterly rendering techniques for transforming real paintings in 
order to obtain such a coded representation which can preserve the painterly style without inducing compression 
artifacts. We also propose to store these painterly representations as scalable vector graphics (SVG), providing a 
lossless and scalable form o f storing these painterly rendered images.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation 
1.3.4 [Image Processing and Computer Vision]: Image Representation

1. Introduction

From the vast amount of 2D non-photorealistic painterly ren
dering techniques some fields of application have emerged in 
recent years. Some of these are achieving painterly effects 
on real images and video, generating sketches, illustrations 
and simplified representations of ordinary images also with 
uses in medical imaging, etc. However, the main goal has 
remained the achievement of the painterly effect for gen
erating painting-like images. In this work we elaborate on 
an idea suggested in namely the possibility of automat
ically re-painting images taken from real life paintings for 
storing these images as the resulting stroke-series represen
tation. The goal is to provide a coding scheme which pre
serves the painting-like features of such images, does not 
induce compression artifacts (i.e. blockiness, ringing, etc.) 
and at the same time provides a multiscale multilayer repre
sentation. We also show that these representations can effi
ciently be stored in SVG (scalable vector graphics)' format, 
providing a platform- and application-agnostic container to 
store these images.

As we will show, the painterly rendering method we use 
is not lossless from the point of view of pixel-level correct 
reconstruction - it is a non-photorealistic rendering method

t  kla@vision.vein.hu 
Í sziranyi@sztaki.hu

after all. But it shows its benefits in preservation of the paint
ing style. The very nature of the painting method used makes 
sure the artificial stroke orientations follow the directions of 
the main contours in the model image, thus not breaking the 
continuity of the painting. It also gives us the opportunity 
of recreating the model images into our own unique version, 
since the stroke templates can be various user defined shapes 
and sizes, thus different styles can be simulated.

Haeberli introduced a simple interactive painterly render
ing 3. In Litwinowitcz’s work strokes with a given center, 
length, radius and orientation are generated, with applica
tions for still and motion picture. Hertzmann presented an al
gorithm 5 which painted an image with a series of multilayer 
B-spline modeled strokes on a grid over the canvas. Szirányi 
et al. introduced the so-called Paintbrush Image Transfor
mation * which was a simple random painting method us
ing rectangular stroke templates, up to ten different stroke 
scales in a coarse-to-fine multilayer way also for segmenta
tion and classification purposes. The image was described by 
the parameters of the consecutive paintbrush strokes. San- 
tella and DeCarlo presented a method ’ which combines 
aspects from the approaches of Haeberli, Litwinowicz and 
Hertzmann. They extended their work with a system collect
ing eye-tracking data from a user *. Kovács et al. presented 
preliminary work on cartoon style transformation of image 
sequences ® based on keyframe stochastic paintbrush trans
formation and optical flow based interframe post-painting.

mailto:kla@vision.vein.hu
mailto:sziranyi@sztaki.hu


Kovács et al. /Painterly Rendering With SVG

This work was further refined and the viability of lossless 
compression on painted images and image sequences was 
shown. Also, an effective storage and compression of real 
life paintings processed with stochastic paintbrush transfor
mation was suggested which is the lead we follow in the 
course of this paper. We suggest the use of painterly transfor
mations to store images of real paintings in a visually pleas
ant representation by preserving the basic style of the im
ages, and also making room for subjective transformations 
of these images by using different stroke patterns.

2. Discussion

In achieving our goals outlined above, we need two steps:

•  transforming the images of the real paintings with 
painterly rendering.

•  translate the generated painterly representation into SVG 
syntax.

In the generation of the painterly representation we use 
a variant of the approach in  ̂ and we will present it in the 
next Section. The painterly transformation produces such an 
output which can be quite easily translated into SVG syn
tax, as we will show later. As a result of these steps we will 
obtain a painterly representation which has some important 
properties:

•  retains the painterly effects of the original images.
•  provides a representation which can be easily scaled with

out re-generating the painterly outputs.
•  can be easily translated into SVG.

Yet, unavoidably, we will also have some drawbacks. The 
basic building block of the painterly transformation algo
rithm (as we will show in the next Section) is the so called 
(artificial) brush stroke, which in our case is a grayscale tem
plate. Thus, it has a defined class of available stroke sizes, 
meaning that there can be details on the model images which 
cannot be reproduced if the size of these details is below 
the availabe smallest stroke size. Secondly, the used stroke 
templates can have colour variance inside a single stroke, 
but no texture content. That also means that details below 
a limit cannot be reproduced. StiU, in spite of these limita
tions, we can produce painting-like transformations, which, 
when looked upon from a distance - Just as in the case of 
real paintings - give the impression of a real painting, but 
when zooming in over á threshold one will not see any more 
details. This is analogous to the real world situation where, 
when going closer to an oil painting, after a while one can
not see more details of the image, only the structure of the 
painted strokes. In the basic mode, we can get a representa
tion of the model image, which tries to mimic the impres
sions of the model. If we use different stroke templates, we 
can get different versions/styles of the same model.

2.1. The Painting Method

In the painterly transformation methods our goal was 
to produce painting-like images in a fully automated way 
that would resemble painting in overall but also be suitable 
for other purposes like image decomposition, representation, 
storage, coding, indexing and retrieval. When an image is 
being represented by a sequence of over- or non-overlapping 
brush-strokes, other aspects of possible utilization may sur
face, e.g. alternative ways of compression, storage and re
trieval. For instance a special sequence describing an im
age area can be used for indexing. At the same time com
pactly designed stroke-parameter series can be effectively 
compressed in a lossless way.

In our painting method artificial brush strokes having the 
shape of a given template are placed in a specific order on a 
blank image (called canvas), trying to construct a painting
like result which resembles the model image. Strokes have 
main parameters like position, orientation, color and size. 
The result of the painting process will be a sequence of such 
stroke parameters which we can store, and later view the 
painted image from this representation.

The painterly rendering technique we use here is a varia
tion of the one used in It is a template-based, multilayer, 
multiscale painting method with edge-oriented stroke direc
tions. The main features of the method are as follows:

•  painting is done in three layers: a coarse layer with laige 
strokes, a middle one with somewhat smaller strokes, and 
a fine layer with small strokes,

•  the orientation of a stroke at a given position is determined 
from the direction of the closest edge lines,

•  the color/texture of a stroke depends on the template map 
(which range from binary to grayscale) and on the color 
below the target stroke position.

Layers Our previous experiments have shown that an aver
age of three layers can give an optimal rendering considering 
computation time and result quality. Thus the painting pro
cess here uses a coarse-to-fine series of three stroke scales 
to generate the painting. Each layer builds upon the previous 
one, and on each layer painting is done until the improve
ment caused by painting with a specific stroke scale falls 
below an exponentially decreasing dynamic threshold. At a 
final step, those placed strokes which get refined at a later 
step and get fully covered by smaller strokes, are removed to 
reduce output size.

Orientation To preserve contours and not to disrupt the 
continuity of the model image, the orientation of the placed 
strokes follows the direction of the nearby edges. The edge 
map used is the result of a scale-space weighted edge ex
traction method used in based on Thus the contours 
and main edges of the model image are preserved without 
the use of antialiasing approaches.



Kovács et al. /  Painterly Rendering With SVG

Color The placed strokes are user-specified templates 
(stroke shapes) given at the beginning of the painting pro
cess. The color of a placed stroke is determined by so called 
majority sampling, which means that the most frequent color 
of the target stroke area on the model image is taken as stroke 
color. If the stroke template was a simple binary mask, then 
this color is explicitly given to the stroke. If the template 
was grayscale, then the selected color is weighted with the 
template intensity values to produce a locally varying stroke 
color. Figure 1 contains an example of painting an image 
with a template.

Stroke-series representation makes a painted image scale- 
independent in the sense that differently scaled versions of 
the painted image can be displayed without re-painting: only 
the strokes are scaled and the positions adjusted. Figure 2 
has an example of a painterly rendered image displayed at 
different scales not by re-generation, but only by scaling the 
stroke sizes and adjusting their relative positions to the scale.

2.2. The SVG Representation

The SVG ' syntax is a fairly simple yet feature-rich meta
language, providing means to describe the contents of a 
graphical vector image by the shapes it consists of, i.e. their 
geometry, position, orientation, color. There are some pre
defined shapes, but free shapes and contour paths can also 
be constructed. The image description data itself is a text 
stream, consisting of the lists of the shapes and their param
eters. SVG also supports the specification of multiple layers. 
In the following we will only discuss those features that are 
needed for the translation of the painterly rendered data into 
SVG, for the broad SVG feature set see *.

For presentation purposes let us consider a case where a 
binary stroke template is used with rectangular shape, with 
sizes of 60x15, 32x8 and 10x3 pixels. In this case every ele
ment of the resulting stroke stieam of the painting process 
will be a rectangle with its own position, orientation and 
color parameters. These need to be specified for the SVG 
representation, e.g.:

<rect
width="32"
height="8"
transform="translate(52,98)

rotate(45.0,16,4)"
fill="#f4028c"

/>

meaning that a 32x8 rectangle needs to be placed at coordi
nates (52,98), rotated by 45 degrees around the center of the 
rectangle, having a purpleish colour. Apart from predefined 
shapes, any shape can be user, e.g.:

<path
d="M 10 10 L 20 10 L 15 20 z" 
fill="#£4028c"

/>

The above will produce a purpleish coloured triangle 
shape (codes mean: M - move to absolute position, L - line to 
absolute position, z - end of path). Bezier curves and elliptic 
curves can also be specified, thus stroke shapes can vary in 
a broad range.

In our case of a series of rectangle strokes, the layers will 
consist of a series of “rect” specifications, with three layers. 
Layers are specified with the

<g id=''layerl"> </g>

syntax. Then, we encode the SVG text stream with a lossless 
coder (gzip, rar, etc.).

The benefit of the SVG representation over the binary 
stroke series storage is that we do not require a specific 
viewer application to view the stored paintings since there 
are many applications on many platforms that can handle 
SVG data. E.g. even some internet browsers have native 
SVG handling support. Other than that, it also provides a 
humanly readable content description instead of binary data. 
Also, in many cases the SVG representation is smaller in size 
than the binary stroke series.

23 . Samples, Compression

Here we provide a few quick samples of painterly rendered 
images. Figures 3 and 4 show some model-painted image 
pairs where the models were images of real paintings. The 
bottom images are close comparisons of the original and 
the painted versions. We can generally say that the painterly 
transformation preserves the painterly style of the model im
ages and at the same time produces an easy to handle, scal
able representation.

As we stated above, the nature of the multilayer coarse-to- 
fine stroke-based painting makes possible the easy scaling 
of the painted images. Figure 5 contains such an example 
of a painterly rendered image translated into SVG and then 
displayed at different resolutions.

Last but not least we present some numerical data show
ing the compactness of the painterly generated output, be 
that a binary stroke stream or an SVG translation. Figure 6 
shows data comparing the compression results of a painted 
images by general image coders, our earlier painterly render
ing method ̂  and SVG ’ representations. Here the point is to 
find out how efficiently the painterly rendered images can 
be losslessly coded, thus the output of the painterly transfor
mation process is encoded with different coders. The graph 
shows that the binary stroke-series based representation is 
always the smallest, the SVG translation falling somewhat 
behind.

Still, on many different types of images the SVG repre
sentation of the painterly rendered outputs can be more effi
ciently encoded as the binary stroke series. Figure 7 contains 
comparison data of some of such examples (the images pro
ducing these results are on Figure 8).



Kovács et al. / Painterly Rendering With SVG

3. Conclusions

In this paper we suggest to use painterly render- 
ing/transformation methods to generate such representations 
of real paintings which retain the style of the model, yet pro
vide an easy to handle and scalable representation and at the 
same time give freedom to manipulate the process and gen
erate different stylized versions of the model image. We also 
show that the picked painterly transformation that we used 
provides a straightforward way to translate the generated 
stroke series representation into a broadly supported SVG 
format, without the need of special viewers for the painterly 
rendered imagery.

12. T. Lindeberg. Edge Detection and Ridge Detection 
With Automatic Scale Selection. International Journal 
o f Computer Vision, 30(2): 117-154, 1998. 2

References

1. Scalable Vector Graphics, 1.1 Specification.
http://www.w3.org/TR/SVG/, January 2003. 1,
3

2. L. Kovács and T. Szirányi. Efficient Coding of Stroke- 
Rendered Paintings. Proceeedings o f the 17th ICPR, 
lAPR&IEEE, pp. 835-839, 2004. 1, 2, 3

3. P. Haeberli. Paint By Numbers: Abstract Image Rep
resentation. Computer Graphics, 24,(4):207-214, Aug. 
1990. 1

4. P. Litwinowicz. Processing Images and Video for An 
Impressionist Effect. Proceedings o f ACM SIGGRAPH 
97, pp. 407-414,1997. 1

5. A. Hertzmann. Painterly Rendering with Curved Brush 
Strokes of Multiple Sizes. Proceedings o f ACM SIG
GRAPH 98, pp. 453-^60, 1998. 1

6. T. Szirányi, Z. Tóth and I. Kopilovic. Paintbrush Image 
Transformation. Proceedings o f Fundamental Struc
tural Properties in Image and Pattern Analysis, lAPR, 
pp. 157-168, 1999. 1

7. D. DeCarlo and A. Santella. Stylization and Abstrac
tion of Photographs. Proceedings o f ACM SIGGRAPH 
2002, pp. 769-776, 2002. 1

8. A. Santella and D. DeCarlo. Abstracted Painterly Ren
dering Using Eye-Tracking Data. Proceedings ofNPAR 
2002, pp. 75-82,2002. 1

9. L. Kovács and T. Szirányi. Creating Animations 
Combining Stochastic Paintbrush Transformation and 
Motion Detection. Proceeedings o f the 16th ICPR, 
lAPR&IEEE. (2): 1090-1093,2002. 1

10. L. Kovács and T. Szirányi. Coding of Stroke-B ased An
imations. Posters Papers Proceeedings ofWSCG 2004, 
pp. 81-84. 2

11. L. Kovács and T. Szirányi. Painterly Rendering Con
trolled by Multiscale Image Features. Proceeedings of 
SCCG 2004, pp. 183-190, 2004. 2

http://www.w3.org/TR/SVG/


Kovács etal. /Painterly Rendering With SVG

Figure 2: A painterly rendered image displayed in larger 
sizes without re-generating the painting.

Figure 1: An example o f generating a painterly rendering 
from the model image (top) with a stroke template (top left). 
Middle: first step (coarse scale), bottom: final step.



Kovács et al. / Painterly Rendering With SVG

-*•

I L

Q k  '  .f.t'i ■i'-.M

Figure 3: Examples o f painterly rendered images (from top 
to bottom, top: model irruige, bottom: final and comparison).

Figure 4: Examples o f pamlerly rendered images (from top 
to bottom, top: model image, bottom: final) o f real oil paint
ings.



Kovács et al. / Painterly Rendering With, SVG

t iff-lzw
TIFF-ZIP
LWF
PNG
JPEG-LS
JP2
plain stochastic 10 layer 
stochastic +edge orient 
stochastic ■^eőge orient. +color morph, 
svg plain
svg stoch. +edge onent.

Figure 6: Storing the painted images as stroke series is more 
efficient than coding them with image coders.

painted sizes

200000 1

160000 1

100000

apples mexico red yellow tulip zorka

Figure 7: In many cases the SVG representation is shorter 
than the binary stroke sequence.

Figure 5: Painterly rendered output as SVG. displayed in 
different sizes.

Figure 8: Some images used in the evaluation.



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Tree Rendering with Billboard Clouds

Ismael Garcia, Mateu Sbert, and László Szirmay-Kalos

University of Girona and Budapest University of Technology 
Emails: igarcia@ima.udg.es, mateu@ima.udg.es, szirmay@iit.bme.hu

Abstract
This paper presents a method to render complex trees on high frame rates while providing accurate occlusion and 
parallax effects. Based on the recognition that a planar billboard is accurate if the represented polygon is in its 
plane, we find a billboard for each o f those groups o f tree leaves that lie approximately in the same plane. The tree 
is thus represented by a set o f billboards, called billboard cloud. The billboards are built automatically by a clus
tering algorithm. Unlike classical billboards, the billboards o f a billboard cloud are not rotated when the camera 
moves, thus the expected occlusion and parallax effects are provided. On the other hand, this approach allows the 
replacement o f a large number o f leaves by a single semi-transparent quadrilateral, which considerably improves 
the rendering performance. A billboard cloud well represents the tree from any direction and provides accurate 
depth values, thus the method is also good for shadow, obscurances, and indirect illumination computation. In 
order to provide high quality results even if the observer gets close to the tree, we also propose a novel approach 
to encode textures representing the billboards. This approach is called indirect texturing and generates very high 
resolution textures on the fly while requiring just moderate amount o f texture memory.

1. Introduction

One of the major challenges in rendering of vegetation is 
that the large number of polygons needed to model a tree 
or a forest exceeds the limits posed by the current rendering 
hardware Rendering methods should therefore apply sim
plifications. To classify these simplification approaches, we 
can define specific scales of simulation at which rendering 
should provide the required level of realism '5;

• Insect scale: A consistent, realistic depiction of individ
ual branches and leaves is expected. The images of in
dividual leaves should exhibit parallax effects when the 
viewer moves, including the perspective shortening of the 
leaf shape and its texture, and view dependent occlusions.

•  Human scale: Scenes must look realistic through dis
tances ranging from an arm’s reach to some tens of me
ters. Consistency is desired but not required.

•  Vehicle scale: Individual trees are almost never focused 
upon and consistency is not required. Viewing distance 
may exceed several hundred meters.

There are two general approaches for realistic tree ren
dering: geometry-, and image-based methods. As it takes 
roughly hundred thousand triangles to build a convincing

model of a single tree, geometry-based approaches should 
apply some form of Level of Detail technique

Figure 1: A tree representation with images

Image-based methods ‘ represent a trade-off of consis
tency and physical precision in favor of more photorealistic 
visuals (figure 1). Billboard rendering is analogous to using 
cardboard cutouts. In order to avoid the shortening of the 
visible image when the user looks at it from grazing angles, 
the billboard plane is always turned towards the camera. Al
though this simple trick solves the shortening problem, it is 
also responsible for the main drawback of the method. The 
tree always looks the same no matter from where we look 
at it. This missing parallax effect makes the replacement too

mailto:igarcia@ima.udg.es
mailto:mateu@ima.udg.es
mailto:szirmay@iit.bme.hu


Garda, Sbert, Szirmay-Kalos /  Tree Rendering with Billboard Clouds

easy to recognize. The user expects that the size and texture 
of the leaves, as well as the distance and relative occlusions 
of leaf groups change as he moves. In order to handle this 
problem, the view-dependent sprite method pre-renders a fi
nite set from a few views, and presents the one closest in 
alignment with the actual viewing direction. A popping arti
fact is visible when there is an alignment change. The com
plex cutout approach uses texture transparency and blend
ing to render more than one views at the same time onto 
properly aligned surfaces. Both methods yield surprisingly 
acceptable results in vehicle scale simulations, but fail to de
liver quality in close-up views. In order to handle occlusions 
correctly, billboards can also be augmented with per-pixel 
depth information If the tree is decomposed to parts 
and each part is represented by such a nailboard or 2.5 di
mensional impostor'^, the parts can be properly composited. 
On the other hand, rendering different parts with different 
billboards a limited parallax is also provided.

An advanced approach that has been actually imple
mented in commercial entertainment software is the basic 
free-form textured tree model, where the images are imposed 
on the approximated geometry. Resulting visuals are satis
factory, although due to the simple geometric model used, 
close-up views usually look artificial.

Finally, the billboard cloucP approach decomposes the 
original object into subsets of patches and replaces each sub
set by a billboard. These billboards are fixed and the final 
image is the composition of their images. Unlike nailboards, 
the billboards of a billboard cloud do not have per-pixel 
depth, but the depth is calculated from the plane of the bill
board.

The method of this paper falls into the class of billboard 
clouds, but it prepares the billboards automatically and so 
carefully that the results are satisfactory not only on vehicle 
scale, but also on human scale, and with some compromises 
on insect scale as well. Since the billboard cloud model has 
been proposed to model conventional man-made 3D objects, 
such as teapots, helicopters, etc., we have to alter their con
struction to take into account the special geometry of natural 
phenomena. Our method is also good to generate shadows 
" , to compute indirect illumination, and can be extended to 
a hierarchical, level of detail approach *.

2. The new method

In order to reduce the geometric complexity of a ffee, we 
use billboards having transparent textures to represent leaf 
groups. Since our billboards are not rotated when the camera 
changes, the expected parallax effects are provided, and the 
geometric accuracy is preserved.

The key of the method is then the generation of these bill
boards. We should first observe that a planar billboard is a 
perfectly accurate representation of a polygon (i.e. leaf) if

Figure 2: The basic idea o f the proposed method: the origi
nal tree defined by a hundred thousand polygons is approx
imated by a few fixed billboards, where a single billboard 
itself approximates many leaves.

the plane of billboard is identical to the plane of the poly
gon. On the other hand, even if the leaf is not on the bill
board plane but is not far from that and is roughly parallel 
to the plane, then the billboard representation results in ac
ceptable errors. Based on this recognition, we form clusters 
of the leaves in a way that all leaves belonging to a cluster 
lie approximately on the same billboard plane and replace 
the whole group by a single billboard. In order to control 
clustering, we shall introduce an error measure for a plane 
and a leaf, which includes both the distance of the leaf from 
the plane and the angle of the plane and leaf normals. The 
applied K-means clustering algorithm '' starts with a prede
fined number of random planes, and iterates the following 
steps:

1. For each leaf we find that plane that minimizes the error. 
This step clusters the leaves into groups defined by the 
planes.

2. In each leaf cluster, the plane is recomputed in order to 
minimize the total error for the leaves of this cluster with 
respect to this plane.

Let us examine the definition of the error measure and 
these steps in details.

2.1. Error measure for a leaf and a plane

Those p =  [x,y,z]^ points are on a plane that satisfy the fol
lowing plane equation (T denotes matrix transpose):

£ > [ B , d ) ( p ) = P ^ n  +  d  =  0 ,

where n =  [nx,ny,nz]^ is the normal vector of the plane, and 
rf is a distance parameter. We assume that n is a unit vec
tor and is oriented such that d  is non-negative. In this case 
D[n ,i](p) returns the signed distance of point (p) from the 
plane.

From the point of view of clustering, leaf i is defined by 
its unit length average normal n,- and its center p,-, that is by 
pair (n,,p/).

1 0



Garda, Sbert, Szirmay-Kalos /  Tree Rendering with Billboard Clouds

polygonal tree 107 billboards, 163 FPS 54 billboards, 256 FPS 29 billboards, 292 FPS

Figure 3: Visual and speed comparisons o f the original polygonal tree and the tree rendered with different number o f billboards.

Leaf i approximately lies in plane [n,rf] if O^n^(Pi) is 
small, and its normal is approximately parallel widi the nor
mal of the plane, which is the case when 1 — (nf • n)^ is also 
small. Thus an appropriate error measure for plane [n,d] and 
leaf (nj,p,) is:

£([n,i/] <-» (n,-,p.)) =  Df„,^(p,) +  a - ( l - ( n f - n ) ^ ) ,  (1)

where a  expresses the relative importance of the orientation 
similarity with respect to the distance between the leaf center 
and the plane.

2.2. Finding a good billboard plane for a leaf cluster

To find an optimal plane for a leaf group, we have to com
pute plane parameters [n, d] in a way that they minimize total 
error £’([•>,d] <-► (ni,p,)) with respect to the constraint 
that the plane nonnal is a unit vector, i.e. n^ • n =  1. Using 
the Lagrange-raultiplier method to satisfy the constraint, we 
have to compute the partial derivatives of

([n, d] <-► (n,-, Pi)) -  X • (n^ ■ n -  1) =
i= l

X (p f n-l-d)  ̂+  a - X ( l - ( n / '  i»)^)->.-(n^-n-l) (2)
1=1 i= l

according to nx,ny,nz,d,X, and have to make these deriva
tives equal to zero. Computing first the derivative according 
to d, we obtain:

where

d =  —c -n.

I

(3)

i=I
is the centroid of leaf points. Computing the derivatives ac
cording to nx,ny,nz, and substituting formula 3 into the re
sulting equation, we get:

where matrix A is
N

1=1

N
■ E n / - n f  
1=1

(5)

Note that the extremal normal vector is the eigenvector of 
symmetric matrix A. In order to guarantee that this ex
tremum is a minimum, we have to select that eigenvector 
which corresponds to the smallest eigenvalue. We could cal
culate the eigenvalues and eigenvectors, which requires the 
solution of the third order characteristic equation. On the 
other hand, we can take advantage that if B is a symmet
ric 3 x 3 matrix, then iteration B" ■ xq converges to a vec
tor corresponding to the largest eigenvalue from an arbitrary, 
non-zero vector xq Thus if we select B =  A ~’, then the 
iteration will result in the eigenvector of the smallest eigen
value.

A -n  =  7,n, (4)

Figure 4: Two from the 32 leaf clusters representing the tree

2.3. Smooth level of detail

The accuracy of the impostor representation can be con
trolled by the number clusters. If clusters are organized hier
archically, then the accuracy can be dynamically set by spec
ifying the used level of the hierarchy. The level is selected 
according to the viewing distance, which results in a level of 
detail approach. To make the changes smooth, we can inter
polate the plane parameters of the two enclosing levels.

11



Garcia, Sbert, Szirtmy-Kalos /  Tree Rendering with Billboard Clouds

3. Indirect texturing

The proposed method uses a single texture for the impostor 
that includes many leaves. It means that the impostor texture 
should have high resolution in order to accurately represent 
the textures of individual leaves. Note that lower resolution 
textures lead to poor results even if sophisticated texture fil
tering is applied (figure 6).

The resolution of the impostor texture can be reduced 
without sampling artifacts if the impostor stores only the po
sition and orientation of the leaves, while the leaves rotated 
at different angles are put in a separate texture (figure 5). 
Let us identify the rectangles of the projections of the leaves 
on the impostor. Each rectangle is defined by its lower left 
coordinate, the orientation angle of the leaf inside this rect
angle, and a global scale parameter (due to clustering the 
impostor planes are roughly parallel to the leaves thus leaf 
sizes are approximately kept constant by the projections). 
If we put the lower left coordinate of the enclosing rectan-

Leaf distribution impostor •

Rotated leaves

Figure 5: Indirect texturing. The billboard is replaced by 
a leaf distribution impostor and the rotated images o f the 
leaves.

gle and the orientation angle into the impostor texture, and 
fill up the texels that are not covered by leaves by a con
stant value outside [0,1], then this texture has constant color 
rectangles, which can be down-sampled. In fact, this down- 
sampling could replace a rectangle of the leaf projection by 
a single texel. We call this low resolution texture as the leaf 
distribution impostor. During rendering, we address this leaf 
distribution impostor with texture coordinates «, v. If the first 
color coordinate of the looked up texel value is outside the 
[0,1] interval, then this texture coordinate does not address 
a leaf, and thus should be regarded as transparent. However, 
if the first coordinate is in [0,1], then first two color coor
dinates r, g are considered as the texture coordinates of the 
lower left comer of the leaf rectangle, and color coordinate 
b is regarded as the rotation angle of the leaf. The rotation 
angle selects the texture that represents this rotation, and «, v 
texture coordinates are translated by r,g and scaled by size s 
of the leaf rectangle, i.e. u' =  {u — r)/s ,v ' =  {v — g)/s  will 
be the texture coordinates of the single leaf texture selected 
by component b.

A texel of the leaf distribution impostor stores the position 
and the orientation of at most a single leaf whose bounding 
rectangle overlaps with this texel. As can be seen in figure 5, 
it may happen that multiple bounding rectangles overlap. 
Since only one of the overlapping leaf can be stored in a 
single pixel, this simplification may result in noticeable arti
facts in form of clipped leaves if a fully transparent part of 
the leaf texture occludes another leaf. Such artifacts can be 
mostly eliminated by using not just one but two leaf distri
bution impostors. The first impostor is created by rendering 
leafs in ascending, while the second with descending order. 
Thus if two leaves overlap, the first leaf is visible in the first 
impostor, while the second is visible in the second impos
tor. During the rendering of the indirect texture the fragment 
shader reads both impostors. If a texel contains no leaf, then 
the fi'agment is ignored. If both impostors refer to the same 
leaf, then its leaf texture is scaled and is applied. However, if 
the two impostors refer to two different leaves, then the first 
leaf texture is looked up and it is checked whether its cor
responding texel is transparent. In case of a non-transparent 
texel, the first leaf texture is used. In case of a transparent 
texel, we look up the second impostor and use the leaf se
lected by this.

Figure 6: Conventional filtered texturing. The image gets 
poor when the observer is close.

Note that indirect texturing exploits the fact that the posi
tion of the leaves are not as important as their color pattern, 
thus stores these two kinds of information separately. The 
final texture is obtained run time without any storage over
head.

4. Shading

Billboard clouds approximately preserve the original geom
etry, thus they can also replace the original tree when shad-

1 2



Garda, Sbert, Szirmay-Kalos /  Tree Rendering with Billboard Clouds

■ i  :• '-V ■■

- 0- • 5

Figure 7: Indirect texturing. Note the high apparent texture resolution.

ows or global illumination effects are computed. However, 
when direct illumination is calculated, the application of the 
same normal for all leaves belonging to a cluster would make 
the planar substitution too obvious for the observer. Thus for 
direct illumination computation, the original normals of the 
leaves are used, which are stored in a normal map associated 
with the impostor plane. If no indirect texturing is used, then 
the normal map may store normals in object space. However, 
in the case of indirect texturing the normal map should have 
a similar structure as the rotated leaves texture. The values 
in this texture store the modulation with respect to the main 
projection direction, and should be nansformed to tangent 
space during rendering.

Figure 8: Trees with illumination and shadow computation.

To compute shadows, i.e. the visibility from point and di
rectional lights (the direction of the sun in particular), the 
classical z-buffer shadow algorithm has been implemented 
with the modification that our implementation skips those

fragments which corresponds to transparent texels of the im
postor planes.

Assuming a single directional light source representing 
the sun, and sky light illumination, the reflected radiance of 
a leaf is computed by the following approximation of the 
rendering equation:

f  =  T ™ "  • [k^ ■{N-S) + ks ■ (N ■ HT) )  ■ V + ■ n ,

where T'“" and S are the radiance and direction of the 
sun, respectively, k^ is the wavelength idependent diffuse re
flectance of the leaf, ks is the specular reflectance, n is the 
shininess, N is the unit normal vector, is the unit halfway 
vector between the illumination and viewing directions, v is 
the visibility indicator obtained with sSiardow mapping, LT"’’" 
is the ambient radiance of the leaf’s local environment, and a 
is the albedo of the leaf. The albedo and the diffuse/specular 
reflection parameters are not independent, but the albedo can 
be expressed from them. We use the following approxima
tion :̂

a ~  kfj n + ks ■
2k:

In order to obtain the ambient radiance of a leaf, that is 
to simulate indirect illumination and sky lighting, an ob- 
scuranceS approach has been used During preprocessing, 
random global directions are sampled for a single billboaid 
cloud tree. The global direction is used! as a projection di
rection. The tree is rendered with the graphics hardware ap
plying a depth peeling algorithm to find not only the closest 
visible point but all pairs of points that are visible from each 
other in the given direction. This information is used then to 
obtain a global occlusion factor o approximating the portion 
of the illuminating hemisphere m which the sky is not vis
ible from the leaf. Simultaneously the: average color of the 
occluding leaves Oc is also calculated. Since both faces of 
the leaves can be lit, we compute two obscurance maps, the 
first represents leaf sides having positive £ coordinate in their

13



Garda, Sbert, Szirmay-Kalos /  Tree Rendering with Billboard Clouds

normal vector, the second represents leaf sides having nega
tive values. Using these values, the ambient radiance around 
a leaf can be approximated as:

where L^'^{N) is the average radiance of the sky around the 
direction of the normal vector of the leaf, and o and Oc are 
the obscurance values depending on the actual leaf side.

The simplified pixel shader code evaluating the color of a 
leaf point is:

f l o a t s  N = tex 2 D (n o rm a lm a p , uv) 
f l o a t 4  o b s  = te x 2 d (o b s u ra n c e m a p , u v ) ;

o_c  = o b s . a ;  / /  r a t i o  o c c lu s io n  
o = o b s . r g b ; / /  o c c lu d e r  c o lo r  

f l o a t s  Lenv = Ls)cy * ( l - o )  + o_c  * o ; 
f l o a t s  d i f f  = k d  * m a x (d o t(N ,L ) , 0 ) ;

sp e c  = k s  ♦ p o w (m a x (d o t(H ,N ), 0 ) ,  n ) ;

f l o a t
f l o a t

f l o a t
r e t u r n  L sun * ( d i f f  + sp e c )  * v  + a  * L env;

This shader gets the normal vector (N) from the normal 
map and the obscurance value (obs) firom the obscurance 
map, and approximates the ambient lighting (Lenv) around 
the leaf. The illumination formula then uses material proper
ties like diffuse reflection factor kd, specular reflection fac
tor ks, and albedo a. Parameter L sun is the intensity of the 
directional or positional light source and v  is the indicator of 
its visibility that is determined by the shadow algorithm.

5. Results
The proposed algorithm has been implemented in 
OpenGL/Cg environment, integrated into the OgreSD 
game engine, and run on an NV6800GT graphics card. 
The tree used in the experiments is a European chestnut 
(Castanae Sativa) having 11291 leaves defined by 112910 
faces and 338731 vertices. The trunk of the tree has 46174 
faces. The leaves have been converted to 32 billboards 
using the proposed algorithm. When we did not apply 
indirect texturing, the bUlboard resolution was 512 x 512. 
Setting the screen resolution to 1024 x 768, leaf rendering is 
speeded up from 40 EPS to 278 FPS when the leaf polygons 
are replaced by the billboard cloud. The comparison of the 
images of the original polygonal tree and the billboard cloud 
tree is shown in figure 3. Note that this level of similarity 
is maintained for all directions, and the impostor tree also 
provides realistic parallax effects.

Figure 9 shows a terrain of 4960 polygons with 2000 
trees rendered on 30 FPS without instancing (the rendering 
is CPU limited). We used the proposed level of detail tech
niques to dynamically reduce the number of leaf cluster im
postors per tree for distant trees from 32 to 16 and even to
8.

6. Conclusions
This paper presented a tree rendering algorithm where clus
ters of leaves are represented by semi-transparent billboards.

The automatic clustering algorithm finds an impostor in 
a way that the represented leaves lie approximately in its 
plane. This approach is equivalent to moving and rotating the 
leaves a little toward their common planes, thus this repre
sentation keeps much of the original geometry information. 
Since the impostors are not rotated with the camera, the pro
posed representation can provide parallax effects and view 
dependent occlusions for any direction. We also discussed 
how leaf textures can be visualized without posing high res
olution requirements for the impostors, and the possibility of 
including smooth level of detail techniques.

7. Acknowledgement

This work has been supported by OTKA (ref. No.: 
T042735), GameTools FP6 (IST-2-004363) project, 
TIN2004-07451-C03-01 project from the Spanish Govern
ment, and by the Spanish-Hungarian Fund (E-26/04).

References

1. C. Andujar, P. Bmnet, A. Chica, 1. Navazo, 
J. Rossignac, and J. Vinacua. Computing maximal 
tiles and application to impostor-based simplification. 
Computer Graphics Forum, 23(3):401-410,2004.

2. X. Décoret, F. Durand, F. Sillion, and J. Dorsey. Bill
board clouds for extreme model simplification. In SIG- 
GRAPH ’2003 Proceedings, pages 689-696, 2003.

3. O. Deussen, P. Hanrahan, R. Lintermann, R. Mech, 
M. Pharr, and P. Prusinkiewicz. Interactive modeling 
and rendering of plant ecosystems. In SIGGRAPH '98 
Proceedings, pages 275-286, 1998.

4. I. Garcia, M. Sbert, and L. Szirmay-Kalos. Leaf cluster 
impostors for tree rendering with parallax. In Euro
graphics Conference. Short papers., 2005.

5. E. Lafortune and Y. D. Willems. Using the modi
fied Phong reflectance model for physically based ren
dering. Technical Report RP-CW-197, Department of 
Computing Science, K.U. Leuven, 1994.

6. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Wat
son, and R. Huebner. Level o f Detail for 3D Graphics. 
Morgan-Kaufmann, 2002.

7. J. B. MacQueen. Some methods for classification and 
analysis of multivariate observations. In Proceedings 
of 5th Berkeley Symposium on Mathematical Statistics 
and Probability, pages 281-297, 1967.

8. N. Max, O. Deussen, and B. Keating. Hierarchical 
image-based rendering using texture mapping. In Euro
graphics Workshop on Rendering, pages 57-62,1999.

9. N. Max and K. Ohsaki. Rendering trees from pre
computed z-buffer views. In Eurographics Workshop 
on Rendering, pages 74-81,1995.

14



Garcia, Sbert, Szirmay-Kalos /  Tree Rendering with Billboard Clouds

Figure 9: Two snapshots from a 30 FPS animation showing 2000 trees without shadow and illumination computation

10. Alex Mendez, Mateu Sbert, Jordi Cata, Nico Sunyer, 
and Sergi Funtane. Real-time obscurances with color 
bleeding. In Wolfgang Engel, editor, ShaderXd: Ad
vanced Rendering Techniques. Charles River Media, 
2005.

11. A. Meyer, F. Neyeret, and Poulin. Interactive rendering 
of trees with shading and shadows. In Eurographics 
Workshop on Rendering, 2001.

12. A. Reche, I. Martin, and G. Drettakis. Volumetric 
reconstruction and interactive rendering of trees from 
photographs. ACM Transactions on Graphics, 23(3), 
2004.

13. G. Schaufler. Nailboards; A rendering primitive for im
age caching in dynamic scenes. In Eurographics Work
shop on Rendering, pages I5 I- I6 2 ,1997.

14. G. Szíjártó. 2.5 dimensional impostors for realistic 
trees and forests. In Kim Pallister, editor. Game Pro
gramming Gems 5, pages 527-538. Charles River Me
dia, 2005.

15. G. Szijártó and J. Koloszár. Hardware accelerated ren
dering of foliage for real-time applications. In Spring 
Conference on Computer Graphics, 2003.

16. G. Szijártó and J. Koloszár. Real-time hardware accel
erated rendering of forests at human scale. Journal o f 
WSCG, 2004.

17. E. Weisstein. World of mathematics. 2003. 
http://mathworld.wolfram.com/Eigenvector.html.

15

http://mathworld.wolfram.com/Eigenvector.html


Third Hungarian Conference on Computer Graphics and Geometry, Budapest 2005

Hungarian Talking Head according to MPEG-4

Zs. Ruttkay,'’̂  A. Fazekas,’ P. Rigó’

‘Information Technology Faculty, PPKE, Budapest, Hungary 
^Dept. of Computer Science, University of Twente, The Netherlands 

’Faculty of Informatics, University of Debrecen, Hungary

Abstract
In this paper we introduce a framework for Hungarian Talking Heads, to utter written text in synthetic 
speech, accompanied by appropriate moving lips and facial expressions. The faces to be animated, as well 
as the visemes are given in terms o f the MPEG-4 standard; level o f detail o f the mouth may be different. The 
CharToon system Ls used to generate the movements o f the mouth and the face, according to the timing 
information provided by the text to speech engine. Facial expressions may be scripted on a low level, or on 
a high level, by using the GESTYLE markup language to annotate the text to be spoken.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]; Animation

1. Introduction

An Embodied Conversational Agent (EGA) is a 2d or 
3d computer graphics model residing on the screen, 
resembling to a real human in its embodiment and its 
communicational skills [3]. In the past 10 years, EGA 
research has been established as a specific field in the 
intersection of computer graphics, artificial intelligence, 
human-computer interaction, and inspired by such non- 
GS disciplines as psychology and cultural anthropology 
and even classical animation and fine arts.

The boom in research had two reasons. On the one 
hand, it is per se a challenging task to model complex 
and subtle phenomena of language processing, gesturing 
and facial expressions, emotional and cognitive 
processes reminiscent of humans, and integrate these 
computational models into a coherent virtual human. On 
the other hand, the EGA technology opens a series of 
applications: first of all, an EGA can serve as a ‘most 
natural user interface’ for traditional complex computer 
systems, making such services accessible for a broad 
public. Besides, EGAs can take the cast of some 
traditional human professions, like tutor [12], 
psychotherapist [13], salesperson [1], weather forecast 
presenter [15] or newsreader [22]. It has been proven 
that people react to EGAs principally the same way as

they do to real humans [23]. It has been also shown that 
people are very critical concerning the quality of speech 
and nonverbal signals of an EGA -  the subjective 
judgment and objective effect of an EGA depends on 
such subtle aspects like the eyebrow-usage [11] or body 
posture [14] of the EGA.

A Talking Head (TH) is a specific EGA, having 
only a synthetic face as embodiment, which is capable 
to talk. As a minimum requirement, a TH should have 
his mouth moving according to speech. The base-line 
criterion for lip motion is believability and life-likeness: 
it would look odd to have a puppet with mouth, which 
does not move during speech, so the mouth movement 
should be in sync with the spoken text. The other 
extreme is lip motion quality good enough to understand 
speech by lip-reading e.g. for hearing impaired users, or 
to teach correct pronunciation for patients with speech 
problems or foreigners learning a language. Hence the 
subtlety of the lip motion (and accordingly, the head and 
mouth model) should depend on the application domain.

Besides the mouse moving, there appear additional 
signals on the human face during speech. Eyebrows and 
gaze are used for e.g. punctuating speech, indicating 
syntactical structures or emphasis; emotional content is 
reflected by facial expressions, some aspects of the

16



Ruttkay et al / Hungarian Talking Head

semantics talked about is illustrated (e.g. ‘big’ may be 
illustrated by raised eyebrow, open eyelids), turn taking 
management is regulated by gaze, and cognitive state 
may be indicated too (e.g. when remembering or 
thinking, one looks up right) [21]. Hence a TH should 
also exhibit eye-gaze, facial expressions and head 
movements next to lip sync, according to the content of 
the speech, state of the speaker, stage of discourse, etc.

In this paper we present a framework for a 
Hungarian Talking Head. That is, a head which, taking 
typed text as input, speaks it out in synthetic speech 
with the lip moving accordingly. Besides, it is possible 
to prescribe facial expressions and gaze behavior for the 
head. As we assume a head which can be animated 
according to the MPEG-4 standard [10], the framework 
can be used to drive different faces, as long as they 
comply with the standard.

In the rest, we first discuss related work on Talking 
Heads. Then in 3.1 we introduce the MPEG-4 standard 
for facial animation, and in 3.2 explain how the visemes 
for Hungarian have been defined using this standard. In
3.3 we discuss the architecture of the system, then we 
tell about scripting of facial expressions on two levels, 
and finally in 3.5 talk about the implementation details. 
In section 4 we sum up our system, outline further work 
and possible applications.

2. Related work

The generation of lip sync in itself has been a research 
issue for distinct languages [20, 5]; and nowadays the 
first commercial systems are available providing lip 
sync for several languages [19]. The basic idea behind 
lip sync is to identify characteristic lip shapes, so-called 
visemes, and to use these as key frames for the 
animation of the lips. For generation of lip movement, 
the following decisions need to be taken;
(1) mapping of acoustic units of the spoken language, 

the so-called phonemes, to visemes;
(2) precise placement of the viseme during the 

duration of the phoneme;
(3) interpolation and coarticulation between visemes.

The 2““’ and 3̂ “* tasks involve subtle timing and 
articulation. When talking, it depends on the phoneme if 
the associated mouth shape is to be produced at the 
beginning of the duration of pronunciation of the sound 
(e.g. for p, b) or the mouths shape is to be kept (more or 
less) during the ‘middle’ of the duration of the sound 
(like in case of long vowels). Also, the mouth shape is 
context sensitive: the viseme associated with a sound

may be influenced by the 2”'', 3"* or even further away 
sound to be pronounced.

This phenomenon of coarticulation has been tackled 
by different approaches; using coarticulation rules [4], 
time profile functions of addition of effect of individual 
visemes [5], machine learning techniques to generate 
visual speech from audio [2]. For Hungarian, L. Czap 
recently provided a Hungarian viseme set, consisting of 
17 characteristic mouth shapes (+ 1 for closed mouth), 
based on descriptive works of the Hungarian sounds and 
analysis of video images of real person’s lip movements 
[6], He characterized the visemes in terms of 3 
parameters of the mouth, mouth opening, width and 
intensity which is proportional to the area surrounded by 
the inner mouth contour. For each viseme, he classified 
each parameter as dominant, flexible or free, depending 
on how resistant the parameter is to the effects of the 
surrounding visemes. He used these characteristics for a 
multi-pass generation process to determine the 
dynamism of the mouth. He gave example of a 
Hungarian talking head which is driven by acoustic 
signal. In his work, the visemes were designed for a 
single virtual head, and the mouth was animated by 
analyzing the acoustic signal of real speech.

Our work on a Hungarian Talking Head is built 
upon our previous work for Talking Heads in English 
and Dutch [28]. In defining the viseme set, we rely on 
L. Czap’s analytical results. Our Hungarian Talking 
Head, on the other hand, is different to his work in the 
following aspects;
(1) The input for our talking head is the typed text the 

head is supposed to utter. The acoustic signal is 
generated by a TTS engine. The mouth is driven 
not by the acoustic signal, but by the timed 
phoneme sequence generated by the TTS engine.

(2) The visemes are given in terms of a number of 
MPEG-4 mouth (and tongue and jaw) parameters. 
Hence a viseme in our work is defined in an 
explicit way by parameters in all detail.

(3) The approach is independent of the head model, as 
the visemes can be used to drive the animation of 
any facial model which can be animated according 
to MPEG-4 parameters.

3. Framework for Hungarian Talking Heads

3.1 Facial animation in MPEG-4

According to the MPEG-4 standard, deformation of 
facial features -  eyebrows, eyelids, mouth, cheek -  
contributing to facial expressions and speech are given 
as displacement (in x or y direction, for some cases in z

17



Ruttkay et al / Hungarian Talking Head

direction) of well-defined points of these features [10, 
18], each corresponding to a Facial Action Parameter 
(FAP). The displacements are given in terms of certain 
normalized distances on the face, assuring that a FAPs 
sequence has similar effects on faces with different 
geometry. The shape of the mouth is to be given by 
displacement of points shown in Fig. 1, corresponding 
to FAPs.

In order to animate an MPEG-4 compliant face, for 
each frame the value of all the FAPs is to be given. It is 
the facial animation engine’s responsibility to assure 
that the whole face gets rendered accordingly.

3.2 Hungarian phonemes and visemes

In our framework we use the Profivox Hungarian TTS 
engine [17], and thus rely on the Phoneme Set of this 
system. The TTS system produces, next to the audio file 
with the speech, a timed sequence of the phonemes 
corresponding to the generated speech.

The mouth shapes to accompany the speech are chosen 
from a Viseme Set, and the correspondence is given by a 
Phoneme to Viseme Mapping Table. For Hungarian, we 
took as a starting point the visemes suggested by L. 
Czap [6]. For each viseme to be used, the corresponding 
mouth shape has to be designed once, in terms of (head 
independent) mouth shape parameters. As we already 
had at our disposal a Viseme Set used for English [26], 
we re-used some of the mouth shapes for the Hungarian 
visemes. Only for sounds u, ö and é we developed new, 
specific mouth shapes. The mouth shape for each 
viseme is expressed in terms of MPEG-4 parameters; 
hence the visemes can be used for any MPEG-4 
compliant face.

Moreover, for 2D faces, we developed earlier a set 
of mouth designs as components to be used when 
creating faces with different level of detail and realism 
[26]. These mouths vary from fhe most detailed one, 
with tongue and teeth, to a simple ellipsoid mouth, 
requiring less and less MPEG-4 parameters to define the 
shape, see Fig. 2. The mouths were designed such, that 
(subsets of) the very same parameters result in similar 
mouth shapes, albeit with less detail. Hence the same 
viseme set and lip sync production mechanism can be 
used for different 2d faces, without any adjustment of 
the Mapping Table or the controlling sequence of FAPs. 
Simply FAPs not supported by the given mouth will be 
discarded, and the remaining ones will assure that the 
right viseme is produced for the given mouth.

Figure 1: The points of the face (in black) 
corresponding to MPEG-4 FAPs.

Figure 2: MPEG-4 compliant mouth shapes for 2d 
CharToon faces of different level of detail.

18



Ruttkay et al /  Hungarian Talking Head

Finally, different Viseme Sets and/or Mapping Tables 
can be used. Hence it is possible to test and refine the 
Vis«ne Sets to be used in an incremental way.

3 J  The architectiire

The architecture of our system is given in Fig. 3. The 
animation of the face takes place by an adapted version 
of the ChaiToon system [25]. The generation of visual 
speech takes place in the following steps:

Phoneme sequence generation

The Hungarian TTS system Profivox generates a time 
sequence of phonemes, and the corresponding audio 
file.

Viseme sequence generation

Based on the timing of the phonemes and ttie 
adjustment principle for the corresponding viseme, for 
each phoneme a viseme is prescribed at a given time. In 
our current setting, we use the two types of adjustment 
principles (simitar to ones we used for Dutch talking 
heads earlier).

snapshot articulation: a peak-shape articulation 
function is placed for the duration of the phoneme, 
the peek being on the first third of the duration for 
plosives, and on the half o f the duration for other 
phonemes;
held articulation: a trapezoid-sh^e articulation 
function is used; the characteristic viseme shape is 
to be ‘held’ for the time interval of the inner third 
of the entire duration of the phoneme for long 
vowels, unless the duration is too short.

The prescribed times are rounded to nearest time on a 
dense discrete time scale, due to the (tunable) discrete 
internal representation of time of the animation system.

FAPs sequence generation

As each viseme is given in terms MPEG-4 FAPs, the 
viseme sequence is transformed into FAP values 
prescribed for the articulation times, which are either a 
snapshot, or a duration, if  a trapezoid-shape articulation 
function is to be used.

FAPs interpolation

For each FAP, a continuous function, based on the FAP 
values prescribed by the viseme sequence, is generated 
by interpolation. At present, we use linear interpolation, 
but in principle different interpolation or tqjproximating 
functions can be used (see more in discussion).

Drawing the animated face

For each frame at the rate specified by the user (at least 
IS Q)s) the FAPs at the given time are sampled, and the 
head model (which can be some 2d ChaiToon head, or a 
3d realistic head) is deformed accordingly. The images 
can be dumped and concatenated to a movie, which can 
be played with the accompanying synthetic speech 
sound file.

3.4 Scripting facial expressions

Besides the mouth moving according to speech 
articulation, other features of the face -  eyebrows, 
eyelids, eyes -  may move too, to express emotions, 
punctuate speech, blink, etc. Moreover, the articulation 
of the mouth may be also influenced by facial 
expressions (e.g. speaking while smiling). How to 
prescribe such additional &cial motions? And how to 
take care of possible conflicting parameters for each 
FAP?

Different facial expressions are also given in terms 
of linear FAP functions for the duration of the 
expression. These expressions, designed once, form the 
repertoire of the face [9]. Any expression frxim the 
repertoire may be prescribed for a certain duration and 
with an intensity at a starting time. A frkcial animation 
may be givoi by a simple low-level script, containing a 
series of prescribed facial expression with the above 
three parameters. The ChaiToon system can generate 
an animation from such a script, by taking the (time and 
intensity-scaled) sample from the facial expression 
repertoire. As a first input in the script, an animation 
produced as described earlier, corresponding to the lip 
motion may be given. In such a case, for each following 
expression in the script its display preference may also 
be given, which regulates how the final FAP value for 
lip parameters is conqnited from the one from the 
viseme and from the one prescribed for an expression.

The above low-level script may be produced by 
hand, or may be the ouqmt of the GESTYLE language 
processing module. GESTYLE [16] is a text markup 
language, where the maikup tags embrace parts of the 
text which need to be uttered e.g. with emphasis, or Avith 
a smile. In comse of processing the marked up text, 
timing information is taken from the TTS engine, and 
the facial expressions, defined in a library, are inserted 
at the right moments, according to possible parameters 
given (intensity, symmetry). GESTYLE can be used on 
meaning level, that is when not (only) facial expressions 
are prescribed by tags, but also content to be expressed, 
and the habits of the character of expressing certain 
meanings by facial signals are given in a style

19



Ruttkay et al / Hungarian Talking Head

dictionary with possible alternatives. In this way non- 
repetitive and individual facial animations can be 
generated for talking heads. By using Profi vox as source 
of the timing information for Himgarian phonemes, the 
whole richness of the GESTYLE control can be 
exploited for Hungarian Talking Heads.

Profivox TTS
f>'r « •* « « • /  • «V

f / ■ ♦*/• d'x .» »t* • »»* ’ ■j‘/ i

‘a

X Í  *% «V. *\  »'S a *H « V

Audio file with 
synthetic speech

.....  '

„- ... . . . . . . . . . . . . . . . . . . . . . . . .

“/"fi

Timed phoneme 
sequence

3.5 Implementation issues

The facial animation modules form part of the 
CharToon facial animation system, developed by the 
first author and her colleagues, implemented in Java 1.1.

This system has been coupled with the Profivox 
TTS engine developed at BME [17], which was 
programmed in C++. We developed an integrated 
environment to generate a movie of speaking talking 
head based on CharToon and Profivox modules. The 
integration of GESTYLE and Profivox is in progress.

Text to be spoken annotated 
with GESTYLE tags

haciárracpr,Ví,-
^  definition^ i

Phoneme to viseme Generate viseme
< ---------------

I X1 \ ilh 1 lu  tf
mapping table

..
sequence

Timed viseme 
sequence

^  1 ii.uJ vtseme and 
i*\nr 'swquenc.e i

Sample and play 
animation

"7  *V  **t ’‘"■f *^i£‘
'  ̂  H /  .‘x"* ♦ ^  X ̂  •• V  ♦ .* •  /  • >r »V

Sííiííí'S 't’ííííí

Figure 3: Architecture of a TH with the Profivox and CharToon components and the possible GESTYLE extension.

20



Ruttkay et al / Hungarian Talking Head

4 Discussion

4.1 Summary of our work

We have developed a Hungarian Talking Head system 
with the following characteristics:

Lip-sync is produced automatically, based on text 
to be uttered, and the timing information of 
phonemes made available by the TTS engine.
The visemes are expressed in terms of MPEG-4 
parameters; hence the framework can be used for 
any facial model which can be animated according 
to the MPEG-4 standard.
The number and types of visemes to be used, their 
mapping, as well as articulation timing with respect 
to the duration of the sound are given as explicit 
and easy to change data, so the framework allows 
experimentation with modified data sets.
For 2d CharToon faces, a set of mouth variants as 
plug-in components for a face are available, which 
correspond to different level of details, and can be 
controlled without any change in the viseme set 
and mapping

4.2 Experimenting with Up-sync

Our framework can be used easily to refine some 
visemes, phoneme-viseme mapping and viseme 
adjustment principle, and hence, experiment with and 
test different settings in order to study the phenomena of 
Hungarian lip-sync and improve the quality of the visual 
speech.

As the CharToon facial animation system also 
supports the scaling of pieces of animation to be used, 
so the phenomena of reducing mouth motion along 
some FAPs, e.g. in case of fast speech as suggested by 
L. Czap, could be achieved.

As of coarticulation, in the first implementation it is 
only the interpolation which assures the blending of on- 
and olfeet durations of visemes. However, the 
CharToon facial animation system has an extension 
Faceinc [24], where constraints may be assigned to 
certain subset of parameters in pieces of animations, and 
thus in visemes. Such constrained animations then can 
be re-used and inserted, and a constrain solving 
mechanism will assure that the total animation is 
readjusted such that the constraints remain valid. In our 
case, this would mean that visemes are not defined as 
strict mouth shapes, but as a set of possible mouth 
shapes (variations) expressed in terms of constraints on 
single or multiple FAPs. By this mechanism, the for the 
production of the sound essential configurations could 
be assured, and flexibility could be introduced.

As GESTYLE also handles emotional speech [27], it 
would be worth experimenting with the defining and 
controlling expressive speech in Profivox, which is a 
task for the TTS experts.

4.3 Real-time performance

Ultimately, we would like to use the presented 
framework to control a responsive Hungarian TH, in 
applications like a information provider or Hungarian 
language tutor. That is, an EGA which can generate in 
near real time the speech and the facial animation for a 
response in Hungarian. As of the technical requirement, 
we shall optimize CharToon’s Face Player engine 
(originally not designed for such a usage). Particularly, 
no movie will be generated, by saving images for each 
frame rendered, but a new player will be used to render 
the face directly based on its vector-based graphics 
definition, and play the speech audio. Also, we will 
explore the possibility of driving real-tine 3d MPEG-4 
compatible models other than the currently used single

4.4 Perception-driven control

Finally, we plan to extend the framework with an 
image-based perception module, whieh would provide 
information about the user in front o f the screen: if 
somebody is present, satisfied or frustrated, is about to 
leave, etc. For this purpose, we plan to couple robust 
facial recognition [7] with high-level behavioral control 
of the TH. Based on face detection [8] the user’s 
authorities can be checked, too. This information, 
extended with possible other sources influencing the 
ECA’s emotional state (e.g. status of a game being 
played with the user) could be used to prescribe the 
facial expressions on the fly to accompany utterances.

4.5 Emotional visual speech

The GESTYLE language is prepared to define and use 
also speech habits and styles of a virtual character [27]. 
Hence it would be a natural interface for emotional 
speech for Hungarian Talking Heads, where the 
emotional characteristics are to be given in Profivox 
parameters. The is interest in using such an emotional 
Hungarian Talking Head as a medium to test the 
perception of emotional expressions by healthy and 
psychiatrically ill people. Also it would be interesting to 
explore possible cultural differences, e.g. by repeating 
our earlier Dutch perception experiments with 
Hungarian subjects. In itself, the exploration of 
Hungarian visual speech, beyond viseme coarticulation, 
is an open terrain.

21



Ruttkay et al / Hungarian Talking Head

Acknowledgement

We thank Géza Németh for making Profivox available 
to generate speech for the Hungarian Talking Head, and 
for Géza Kiss for providing technical help to use the 
TTS software.

The first author’s contribution was made possible 
due to the Szent-Györgyi Albert Fellowship at the 
Pázmány Péter Catholic University in 2005.

Bibliography

1. E. Andre, T. Rist: Presenting through performing; 
On the use of multiple lifelike characters in 
knowledge-based presentation systems. In: H. 
Lieberman (ed.): International Conference on 
Intelligent User Interfaces 2000. pp. 1-8.

2. M.E. Brand: Voice puppetry, Proc. of ACM 
SIGGRAPH 1999. pp 21-28,

3. J. Cassell, J. Sullivan, S. Prevost, E. Churchill 
(Eds.): Embodied Conversational Agents, MIT 
Press, Cambridge, MA. 2000.

4. J. Cassell, C. Pelachaud, N.I. Badler, M. Steedman, 
B. Achom, T. Becket, B. Douville, S. Prevost, M. 
Stone, Animated conversation: Rule-based 
generation of facial expression, gesture and spoken 
intonation for multiple conversational agents, Proc. 
of SIGGR.APH'94, 1994. pp. 413-420.

5. M. M., Cohen, D. Massaro: Modeling
coarticulation in synthetic visual speech. In N. M. 
Thalmann & D. Thalmann (Eds.) Models and 
Techniques in Computer Animation. Tokyo: 
Springer-Verlag, 1993.

6. Czap, L.: Audiovizuális beszédfelismerés és 
beszédszintézis, PhD értekezées, 2004, BME 
Távközlési és Médiainformatikai Tanszék

7. A. Fazekas, I. Sánta: Recognition of facial gestures 
based on support vector machines. Lectures Notes 
in Computer Science 3522. 2005. pp. 469-475.

8. A. Fazekas, C. Kotropoulos, I. Buciu, I. Pitas: 
Support vector machines on the space of Walsh 
functions and their properties, Proc. of 2nd 
International Symposium on Image and Signal 
Processing and Analysis, 19-21 June, 2001. Pula, 
Croatia, pp. 43-48.

9. J. Hendrix, Zs. Ruttkay, P. ten Hagen, H. Noot, A 
Lelievre, B.de Ruiter: A facial repertoire for avatars. 
Proceedings of the Workshop "Interacting Agents", 
Enschede, The Netherlands, pp. 27-46. 2000.

10. ISO, Text for ISO/IEC FDIS 14 496-1,2 ISO/IEC 
JTCl/SC29/WGll,N2502,Nov. 1998.

11. E. Krahmer, Zs. Ruttkay, M. Swerts, W. Wesselink: 
Audiovisual cues to prominence. Proceedings

International Conference Spoken Language 
Processing, Denver, CO, 2002, pp. 1933-1936.

12. J. Lester, S. Converse, S. Kahler, S. Barlow, B. 
Stone, R Bhogal: The Persona effect; affective 
impact of animated pedagogical agents, Proc. of 
CHI’97, 1997, pp. 359-366.

13. S. Marsella: Interactive Pedagogical drama: 
Carmen's bright ideas assessed. IVA 2003: pp. 1-4

14. C. Nass, K. Isbister, E. Lee: Truth is beauty: 
researching embodied conversational agents. In: J. 
Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.): 
Embodied Conversational Agents, MIT Press, 
Cambridge, MA. 2000.

15. T. Noma, L.Zhao, N. Badler. Design of a virtual 
human presenter, IEEE Computer Graphics and 
Applications 20(4), July/August 2000, pp. 79-85.

16. H. Noot, Zs.Ruttkay; Variations in gesturing and 
speech by GESTYLE, International Journal of 
Human-Computer Studies, Special Issue on ‘Subtle 
Expressivity for Characters and Robots’, to appear 
in 2005.

17. G. Olaszy, G. Németh, P. Olaszi, G. Kiss, Cs. 
Zainkó, G. Gordos; Profivox -  a Hungarian TTS 
System for Telecommunications Applications. 
International Journal of Speech Technology. Vol 3-
4. Kluwer Academic Publishers. 2000. pp. 201-215.

18.1. S. Pandzic, R. Forchheimer (editors): MPEG-4 
Facial Animation - The Standard, Implementations 
and Applications, John Wiley & Sons, 2002.

19.1. S. Pandzic, J. Ahlberg, M. Wzorek, P. Rudol, M.
Mosmondor: Faces everywhere: Towards
ubiquitous production and delivery of face 
animation. Proceedings of the 2nd International 
Conference on Mobile and Ubiquitous Multimedia, 
Norrkoping, Sweden, 2003.

20. C. Pelachaud, E. Magno-Caldognetto, C. Zmarich, 
P. Cosi, Modelling an Italian Talking Head, Audio- 
Visual Speech Processing,2001, pp, 7-9

21.1. Poggi, C. Pelachaud, Performative facial 
Expressions in Animated Faces, In J. Cassell, J. 
Sullivan, S. Prevost, E. Churchill (Eds.), Embodied 
Conversational Agents, Cambridge (Mass.): MIT 
Press, 2000. pp. 155-188.

22. Reana, http://jeny.zavod.tel.fer.hr/humanoid/usluge/ 
index.html

23. B. Reeves, C. Nass; The media equation. How 
people treat computers, television, and new media 
like real people and places. Stanford, CA; CSLI 
Publications, Cambridge University Press, 1996.

24. Ruttkay, Zs.; Constraint-based facial animation. Int. 
Journal of Constraints, Vol. 6. 2001. pp 85-113.

25. Zs. Ruttkay, H. Noot, Animated CharToon Faces, 
Proceedings of NPAR 2000 -  First International

22

http://jeny.zavod.tel.fer.hr/humanoid/usluge/


Ruttkay et al / Hungarian Talking Head

Symposium on Non Photorealistic Animation and 
Rendering, 2000. pp. 91-100.

26. Zs. Ruttkay, A. Lelievre; CharToon 2.1 extensions; 
Expression repertoire and lip sync, CWI Report 
INS-R0016, Amsterdam, 2000.

27. Zs. Ruttkay, V. van Moppes, H. Noot: The jovial, 
the reserved and the robot, Proc. of the AAMAS03 
Ws on “Embodied Conversational Characters as 
Individuals”, 15th July, 2003, Melbourne, Australia

28. Zs. Ruttkay, H. Noot: Cartoon Talking Heads, ,Proc. 
of the 1®* Hungarian Computer Graphics 
Conference, 2002. Budapest, pp. 2-9.

23



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Rendering Fire and Smoke with Spherical Billboards

Tamás Umenhoffer, László Szirmay-Kalos

Department of Control Engineering and Information Technology, 
Budapest University of Technology, Hungary 

Email: umitomi@freemail.hu, szirmay@iit.bme.hu

Abstract
This paper proposes an improved billboard rendering method, which renders particles as aligned quadrilaterals 
similarly to previous techniques, but takes into account the spherical geometry o f the particles during fragment 
processing. The new method can eliminate billboard clipping and popping artifacts o f previous techniques, hap
pening when the participating medium contains objects, or the camera flies into the volume. This paper also 
describes how to use this new technique to render high detail fire and smoke on high frame rates.

1. Introduction

Participating media * are often represented by particle sys
tems In case of a particle system a partiele point represents 
its spherical neighborhood where the volume is locally ho
mogeneous. Particle system rendering methods usually splat 
particles onto the screen, which substitute them with a semi
transparent, camera-aligned rectangles, called billboards *.

2. Billboard clipping and popping artifacts
The main problem with billboard type particle systems is 
that billboards are planes, thus they have no extension along 
one dimension.

billboard

Figure 1: Billboard clipping artifact. When the billboard 
plane intersects the object, transparency becomes spatially 
discontinuous.

This can cause artifacts when billboards intersect objects

making the intersection of the billboard plane and the ob
ject clearly noticeable (figure 1). The core of this problem 
is that a semi transparent billboard fades those objects that 
are behind it according to its transparency as if the object 
were fully behind the sphere of the particle. However, those 
objects that are in front of the billboard plane are not faded 
at all, thus transparency changes abruptly at the object bill
board intersection.

When the camera moves into the media, billboards also 
cause popping artifacts. In this case, the billboard is either 
behind or in front of the front clipping plane and the tran
sition between the two stages is instantaneous. The former 
case corresponds to a fully visible, while the latter to a fully 
invisible particle, which results in an abrupt change during 
animation (figure 2).

Solutions to solve billboard chpping artifacts in case of 
solid objects have already been proposed, but non of them 
deals with volumetric media '’■**. In this paper we propose 
a novel solution for including objects into volumetric me
dia without billboard clipping artifacts, and also to eliminate 
billboard popping during animation.

3. Spherical billboards

Billboard clipping artifacts are solved by calculating the real 
path length a light ray travels inside a given particle, as this 
length controls the opacity value to be used during rendering.

24

mailto:umitomi@freemail.hu
mailto:szirmay@iit.bme.hu


Umenhoffer, Szirmay /  Rendering Fire and Smoke with Spherical Billboards

Frame A

front plane I

I., billboard 
N fully 
/  visible 

billboard

Frame B

CD
billboard '

billboard 
! fully 

invisible

front plane

( T - , i.-f

Figure 2: Billboard popping artifact. Where the billboard 
gets to the other side of the front clipping plane, the trans
parency is discontinuous in time (the figure shows two adja
cent frames in an animation).

This calculation is done with dealing with the spherical ge
ometry of particles instead of assuming that a particle can be 
represented by a planar billboard. However, in order to keep 
the implementation simple and fast, we still send the par
ticles through the rendering pipeline as quadrilateral primi
tives, and take into account the spherical shape only during 
fragment processing.

Let us review the individual rendering steps. We assume 
that a preliminary rendering pass have been made to store 
the scene depth values as camera space z coordinates in a 
texture.

The particles are rendered as quads perpendicular to axis 
z, placed at the farthest point of the particle sphere from the 
camera to avoid unwanted front plane clipping. Disabling 
depth test is also needed to eliminate incorrect object-quad 
clipping.

When rendering a fragment of the particle, we compute 
the interval the ray travels inside the particle sphere in cam
era space. This interval is obtained with considering the 
scene depths and the camera’s front clipping plane distance. 
With the use of the segment length we can compute the opac
ity for each fragment in such a way that both fully occluded 
or fully visible and partially occluded particles will be dis
played correctly, giving the illusion of a volumetric media. 
During computation we assume that the density is uniform 
inside a particle.

Let us use the notations of figure 3 where a particle of

Figure 3: Computation o f the length o f the ray segment trav
eling inside a particle sphere in camera space.

center P =  [xp,yp,Zp) is rendered as a quad perpendicu
lar to axis z, and a ray is cast through point Q =  {x,y,zt/} 
of the quadrilateral. The radius of the particle sphere is 
r, the distance between the ray and the particle center is 
d = v’'(x — -f (y — yp)'^. The closest and farthest points 
of the particle sphere on the ray from the camera are F 
and B, respectively. The ray travels inside the particle in 
interval [|F|,|iB|], where |F | = Zp — y/r^ — <P- and |B| = 
Zp-t-Vr^ — á  .

In order to take into account the front clipping plane and 
the object depths, these distances must be altered. First to 
eliminate popping artifacts, we should ensure-that |F | is 
never smaller than the front clipping plane distance / ,  thus 
the distance the ray travels in the particle before reaching the 
front plane is not included. Secondly, we should also ensure 
that |F| is never greater than Zj, which is the stored scene 
depth at the given pixel, thus the distance travelled inside 
the objects is not considered.

With these altered distances we can obtain the real length 
of the ray segment:

As =  max{f, |F |) — mm(Zi, |B|), 

and also the corresponding opacity value.

The fragment program gets some of its inputs from the 
vertex shader: the particle position in camera space (In.P), 
the shaded point in camera space (In.Q), the particle ra
dius (fn.r), the screen coordinates of the shaded point 
(In.screenCoord). The fragment program also gets some 
uniform parameters: the texture containing the scene depth 
values (sceneDepth), the density (tau) and the camera’s 
front clipping plane distance (frontPlane). The fragment 
program executes the following operations:

float d=length(In.P.xy-In.Q.xy); 
if(d>In.r) alpha=0; 
else {
float w=sqrt (In.r*In.r-d*d);
Zs=tex2D (sceneDepth,In.screenCoord).r;
Zf=raax(frontPlane,Zp-w);
Zb=min(Zs,zp+w);

25



float ds=Zb-Zf; 
alpha= 1 - exp(-tau 
)

4.1. Rendering dust and smoke

Umenhoffer, Szirmay /  Rendering Fire and Smoke with Spherical Billboards

ds);

With this simple calculation method we obtained the real 
ray segment length, thus we can compute the real opacity of 
the given particle, and eliminate clipping and popping arti
facts (see figure 4).

Figure 4; Particle system with and without clipping arti
facts.

4. Rendering participating media with particle systems

A particle system is a discretization of a continuous volume, 
which allows us to replace the differentials of the volumetric 
rendering equation by finite differences. Denoting the length 
of the ray segment intersecting the sphere of particle j  by 
Asy, and the density, albedo and phase function of this parti
cle by 'Ey,ay,/*;, respectively, we obtain the following equa
tion expressing outgoing radiance L{j, S) of particle j  at di
rection ay.

L{j, &) =  / ( J ,  Ö) ■ (1 -  ay) +  ay • Cy -I- £y(©),

where I(j,<űi) is the incoming radiance, a j = I —e 
the opacity that expresses the decrease of radiance caused by 
this particle due to extinction, E j =  /-y(m) • As is the emission 
of particle j  in direction (5, and

C j = a j -  J I { j , a / )  ■ Pj{m',a ) do)'

In our test scene we used two smoke-like particle systems. 
The first is used to display low albedo smoke in the fire, as 
we separated the fire into a participating and an emitting part. 
The second system is used to give atmosphere to the scene, 
representing the swirling dust in the air (figure 5).

When rendering dust and smoke we assume that the 
smoke particles does not emit radiance so the emission term 
is zero. Om' main task is to calculate the in-scattering term. 
To do this, we need the travelled ray length, the albedo, the 
density and the phase function (see equation I). We use the 
Henyey-Greenstein phase function

a) = -1____3(i-g^)-(i + (S'.a)̂ ) ,
^ ’ ''471 2(2-Hg2).(l+g2_2g(0'.a))3/2’

where g € (—1,1) is a material property describing how 
strongly the material scatters forward or backward. To speed 
up rendering, function values are read from a pre-rendered 
2D texture.

To be able to use fewer number of particles, we used a 
grey scale smoke texture on the billboards to give details in 
opacity changes within a billboard. To increase variety in the 
smoke, we took a high resolution texture, and each particle 
has its own area within this texture according to the parti
cle’s id. As we render an animation this texture should be 
animated too. It is efficient to store the animated image in a 
3D texture as inter-frame interpolation and looping can au
tomatically be done by the graphics hardware's texture sam
pling unit

Figure 5: High albedo dust and low albedo smoke.

is the contribution from in-scattering. Note that the travelled 
path length in a given particle plays an important role in the 
above equations.

If we know the in-scattering term, the volume can effi
ciently be rendered from the camera using alpha blending. 
The in-scattering term is attenuated according to the total 
opacity of the particles that are between the camera and this 
particle. This requires the sorting of particles in the view di
rection before sending them to the frame buffer in back to 
front order. At a given particle, the evolving image is de
creased according to the opacity of the particle and increased 
by its in-scattering and its emission term (equation 1).

4.2. Rendering fire

We treat fire as a black-body radiator not as a participat
ing medium, so only the emission term is needed. The main 
problem is to find the suitable colors for the fire. For a black- 
body we can compute the emitted radiance for a given wave
length using Planck’s formula:

2C,
X5(eCa/(xr) _  1)

where Q  = 3.7418 • lO-'® Wm^, Cz =  1.4388 • 10"^ mK° 
and T  is the temperature of the radiator Figure 6 shows the

26



Umenhojfer. Szirmay/ Rendering Fire and Smoke with SphericaJ Billboards

H i

spectral radiance of black-body radiators at different tem
peratures, the higher the temperature is the more blueish the 
color gets.

Figure 6: Black-body radiator spectral distribution

For different temperature values, we can compute the 
RGB components by integrating the spectrum. We stored 
the results of these values within the interval T 6 
2500fC° — 3 2 0 0 /1 ° in a texture (see figure 7).

2500 K-3200 K 10000 K

Figure 7: Black-body radiator colors from QK° to 10000/f°. 
Our demo used temperature values from 2500K° to 320QK°.

Just like in the case of smoke we applied an animated grey 
scale image to alter the opacity values of the fire billboards. 
The intensity values stored in this texture also defines a map
ping to the temperature values to be used, namely higher in
tensity values represent higher temperatures (see figure 8), 
We used the same method to increase variety as in the case 
of smoke and dust.

Figure 8: Fire texture and the final fire color.

5. Layer composition

To combine the particle systems with the scene, we used a 
layer composition method because it has several advantages 
■*. This way we should render the scene and the systems in

separate textures and compose them. This leads to three ren
dering passes; the first pass renders the scene objects, the 
second pass renders the dust, fire and smoke, and the final 
pass composites them together.

great advantage of rendering the participating medium 
into a texture is that we can use floating point blending. An
other advantage is (hat this render pass can have smaller 
resolution than the final display resolution which speeds up 
rendering especially because blending needs a huge amount 
of pixel processing power through pixel overdraw (see fig
ure 9).

Figure 9: Particles rendered to render targets with different 
sizes. Up left: particle render target with screen resolution 
(30 FPS). Up right, bottom left, bottom right: render target 
with half (40 FPS), quarter (50 FPS) and eigth (60 FPS) of 
the screen resolution.

Another rendering pass should be made for producing 
scene depth which is needed by the particle systems, but this 
pass can be encapsulated within the first pass with the use 
of multiple render targets. This way scene geometry can be 
processed only once.

To enhance realism, we simulated heat shimmering that 
distorts the image. This is done with rendering particles with 
a noisy texture. This noise is used in the final composition 
as u.v  offset values to distort the scene image (figure 10). 
This pass can also Ifle encapsulated in the rendering of fire 
particles with multiple texture targets.

The final effect ttiat could be used through composition 
is motion blur, which can easily be done with blending, let
ting the new frame fade into previous frames. The complete 
rendering process is shown in figure 11.

27



Umenhojfer, Szirmay /  Rendering Fire and Smoke with Spherical Billboards

Figure 10: Heat noise texture and the final distorted image.

P a ss l Scene color Scene depth

Dust Fire color Fire heat Sm oke

Pass3 Final C om posited Image

Figure  11: Rendering algorithm

6. Results

The presented algorithm has been implemented in 
OpenGL/Cg environment on an NV6800GT graphics 
card. The dust, fire and smoke consist o f 16,115 and 
28 animated particles, respectively, with relatively huge 
sizes. The modelled scene consists o f  16800 triangles. The 
scene is rendered with per pixel Phong-Blinn shading. Our 
algorithm still offers realtime rendering speed with high 
details (see figure 12). The frame rate strongly depends on 
the number of overridden pixels. It is about 40 FPS. The 
scene without the particle system is rendered at 70 FPS. We 
should mention that the classic billboard rendering method

would also run at a frame rate about 40 FPS. This means 
that the performance we loose by the clipping calculation 
can be regained by decreasing the particle system ’s render 
target resolution.

7. Conclusion

This paper proposed to consider particles as spheres rather 
than planar billboards during rendering while still render
ing them as billboards, which eliminated billboard clipping 
and popping artifacts. The paper also introduced an efficient 
method to display fire, smoke and dust. It also used post ren
dering effects and still offers high frame rates, taking advan
tage of the GPU.

8. ,\cknow ledgem ent

This work has been supported by OTKA (T042735), Ga- 
meTools FP6 (IST-2-004363) project, by the Spanish- 
Hungarian Fund (E-26/04).

References

1. J. F. Blinn. Light reflection functions for simulation of 
clouds and dusty surfaces. In SIGGRAPH ’82 Proceed
ings, pages 21-29, 1982. 1

2. W. Cornette and J. Shanks. Physical reasonable analytic 
expression for single-scattering phase function. Applied 
Optics. 31(16):31-52, 1992. 3

3. G. Henyey and J. Greenstein. Diffuse radiation in the 
galaxy. AstrophysicalJournal, 88:70-73, 1940. 3

4. H. Nguyen. GPUGems : Programming Techniques, 
Tips, and Tricks fo r  Real-Time Graphics, chapter 6 Fire 
in the "Vulcan" Demo, pages 87-105. Addison-Wesley, 
2004. 3, 4

5. W. T. Reeves. Particle systems - techniques for mod
elling a class o f fuzzy objects. In SIGGRAPH '83 Pro
ceedings, pages 359-376, 1983. 1

6. G. Schaufler. Dynamically generated impostors. In 
I Workshop - Virtual Worlds - Distributed Graphics, 
pages 129-136,1995. 1

7. R. Siegel and J. R. Howell. Thermal Radiation Heat 
Transfer. Hemisphere Publishing Corp., Wa.shington. 
D.C., 1981. 3

8. G. Szijártó. 2.5 dimensional impostors for realistic 
trees and forests. In Kim Pallister, editor. Game Pro
gramming Gems 5, pages 527-538. Charles River Me
dia. 2005. 1

9. G. Szijártó and J. Koloszár. Hardware accelerated ren
dering of foliage for real-time applications. In Spring 
Conference o f Computer Graphics "93,2003. 1

2 8



Umenhoffer, Szirmay /  Rendering Fire and Smoke with Spherical Billboards

Figure  12: Rendered frames from the animation sequence.

29

I m



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

An Iterative Improvement of the Tomasi-Kahade
Factorization

Levente Hajder'

* Computer and Automation Institute, Hungarian Academy of Sciences 
Budapest, Kende u. 13-17, H-1111 Hungary

Abstract
Reconstruction o f moving rigid objects is a widely applicable and challenging computer vision task. In this paper, 
we give an improvement o f the well-known factorization method published by Tomasi and Kanodé * *. The proposed 
method can deal with the reconstruction o f moving nonrigid objects under orthography and weak-perspective. The 
proposed and the original methods are quantitatively compared on synthetic data in different simulated situations. 
The new method is applied for an existing outlier rejection method ̂  and significantly improves its quality.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene 
Analysis

1. Introduction

The Structure from Motion (SfM) problem (recovering 
scene geometry and camera motion from a video sequence) 
has attracted attention o f the computer vision community 
since late eighties. The original factorization method of 
Tomasi and Kanade can calculate the 3D coordinates o f  
an object from a sequence of tracked feature points o f the 
object. The input o f the method is the 2D coordinates o f the 
tracked feature points, while the output is the 3D coordinates 
of the points and the base vectors o f  the camera planes in all 
frames. In the literature, the three-dimensional data is called 
the structure data, the base vectors are called the motion in
formation.

The original method calculates structural information for 
a single moving rigid object under orthographic projection. 
Recent studies try to extend the theory to the nonrigid 
case; in this article, we only discuss the rigid case. There are 
also studies that extend the theory to the weak-perspective 
paraperspective  ̂ and perspective camera models.

The original factorization method consists o f two main 
steps:

1. SVD-step: The first step is a rank reduction o f the so- 
called measurement matrix containing the 2D data of fea
ture points by a Singular Value Decomposition (SVD).

Then the measurement matrix is factorized into pre- 
stmcture and pre-motion data.

2. Refinement-step: The pre-motion data is transformed by 
a matrix according to the constraints on the base vectors.

The drawback o f the method is that the SVD-step reduces 
the space o f the measurement matrix, and the refinement- 
step can only modify the motion and structure data in the 
previously reduced space. The key idea of this paper is to 
improve the original factorization by an iterative algorithm, 
which reduces an error value by fining the structure and the 
motion data independently.

The contribution of this papter are as follows: The origi
nal factorization method " and its extension to the weak- 
perspective case are reviewed first. The proposed method is 
given in section 3 . The quantitative test on synthetic data is 
presented in section 4. We demonstrate the efficiency of the 
improved factorization method by applying it for an outlier 
filtering algorithm Finally, section 6 sums up the results.

2. SfM  under orthography and weak perspective

Given P feature points o f  a rigid object tracked across F 
frames, x/p  =  { u f p , v / p f , f  = 1 , . . . ,F ,  p = \ , . . . , P ,  the 
goal o f SfM  is to recover the structure of the object. For or
thogonal projection, the 2D coordinates are calculated as

Xfp = RfSp-l-tf,  ( 1)

30



Levente Hajder /  Improvement o f Factorization

where Rf  — [rf[, r p \ ^  is the orthonormal rotation matrix, Sp 
the 3D coordinates o f  the point and iy the offset. Under the 
weak perspective model, the equation is

Xfp — qfRfSp 'f'ty, (2)

where q f  is the nonzero scale factor o f weak perspective. 
The offset vector is eliminated by placing the origin of 2D 
coordinate system at the centroid o f the feature points.

For all points in the /- th  image, the above equations can 
be rewritten as

Wf = { x fx . . . x fp ) =  M f  S (3)
2-x.P 2x3 3x/>

where M f  is called the motion matrix, S — {s\, . . . ,sp)  the 
structure matrix. Under orthography M f = Rf,  under weak 
respective Mf = qfRf .

For all frames, the equations (3) form

2FxP 2Fx3 3 x P  

where =  [V F f,w f ,.. . ,IT J ]
Im J',m I . . . , m ^].

(4)

and M' =

The task is to factorize the measurement matrix W  and 
obtain the structural information S. This can be done in two 
steps. In the first step the rank o f W  is reduced to three by 
the singular value decomposition (SVD), since the rank of  
W is at maximum three; This fac
torization is determined only up to an affine transformation 
because an arbitrary 3 x 3  non-singular matrix Q can be 
inserted so that W  =  ÚQQ~^S. Therefore M  contains the 
base vectors o f  the fi-ames deformed by an affine transfor
mation. The matrix Q can be determined by imposing the 
orthonormality constraint on the frame base vectors. The es
timated motion vectors can be written as /f  =  MQ, where 
^  =  ['■ll,n2! - - - ! f i't .fF 2]^-

2.1. Metric constraints under orthography

A closed-from solution for Q under orthography has been 
originally proposed in For orthographic projection the 
base vectors in each frame are orthonormal. This provides 
three constraints per frame:

=  1,

f / 2f /2  =  =  1,

r}i rf2 =  ififi Q^Qrhfi =  0
(5)

Introduce symmetric matrix L as

L ^ Q ‘ Q =
h  h  h  
h  k  h  
h  h  k

(6)

■ / "1 g { i h n , m u ) t ■ 1 ■
h g { m i 2 , m n ) 1
n
h

g { m u , i h i 2 ) 0

k g ( r h F \ , i h F \ ) 1
h
1 g { n i F 2 , m F 2 ) 1

L  ^6 J g { m F \ , r h F 2 )  . 0

One can optimally calculate the elements o f L as the least 
squares solution of the over-determined system

(7)

or briefly I = G^c, where is the pseudo-inverse of G and 
g { a ,b )  is

[ a i f i i , a i i ) 2 +  02^1 )« 1 * 3 + 0 3 ^ ’] > 0 2 * 2 .0 2 * 3 + 0 3 * 2 , 0 3 ^ 3 ]

The matrix Q is obtained by the eigen-decomposition of 
L.

2.2. M etric constraints under weak perspective

Under weak perspective a closed-form solution can also be 
obtained by least squares optimization In this case, we 
have only two constraints for each frame:

'■ /if/l =  f / 2r/2  

f / iF /z  =  0

Equation (7) modifies as follows:

g ( m i i , /h i l ) - g ( m i2 ,/n i2) 
g{mn,fhx2)

^weak ~
g{mpi , thpi) — g{mp2,lflF2) 

g{mF\,mp2)

(8)

and c„eak = [0 , 0 , . . . , 0 ,0 ]' ■ ^weakl — ^weak hus an infinite 
number o f solutions. The system has one degree of freedom. 
In particular, / =  0  is always a correct solution. An additional 
constraint is needed. It is well known  ̂ that the optimal least 
squares solution subject to F l  =  1 is the eigenvector o f ma
trix GlggfGy/eak corresponding to the least eigenvalue.

3. The proposed m ethod

In this section, an updated version o f the Tomasi-Kanade 
factorization is presented. As it is mentioned in the introduc
tion, the weak point o f  the original method is the SVD step: 
the singular value decomposition reduces the space o f the 
measurement mafrix into three and after rank reduction, the 
factorization cannot leave the three-dimensional subspace.

The proposed algorithm is an iterative one. After initial 
values are determined, in each iteration step, the motion and 
the structure matrices are fined. The corresponding part of 
the motion matrix can be expressed as the function of three 
angles ( a / ,  p /  and Y/) and a scaling parameter q f  in every 
frames as it is descrited in appendix A.

31



Levente Hajder /  Improvement o f Factorization

3.1. Initialization o f  the motion data

The intention o f this section is to determine the initial angles 
a ° , p® and and scale parameter q f  corresponding to the 

initial motion data represented by motion matrix At® =  MQ 
obtained by the original factorization.

The motion matrix At® can be divided into submatrices 
corresponding to the frames. Let A/^ be the motion subma
trix o f the frame. It has a size o f 2 x  3. The rows of the 
matrix represent the base vectors o f the camera plane on the 
corresponding frame. The matrix can be completed with the 
third base vector; let the direction o f the third vector be par
allel to the cross product o f  the first two base vectors, let 
its length be unit (orthography) or the average o f the other 
two vectors (weak-perspective). The completed matrix is de
noted by f/fif.

The measurement matrix is also constructed fi"om subma
trices; Wf denotes the submatrix o f the measurement matrix 
W in the /** frame as it is defined above. The matrix Wf is 
completed in the following way; Wf =  Aí^5.

Each element o f M f is a function o f the rotation angles a®, 
P® and 7^ and the scale parameter qf. In general case, Ai  ̂
is not an orthogonal matrix, since the factorization method 
described above does not guarantee the orthogonality o f Mj. 
The matrix is only quasi-orthogonal.

The task is to find the closest orthonormal matrix to Mq. 
With the completed matrices Mq and W^, the problem can 
be transformed to an already solved data fitting problem; 
given two 3D data set (the columns of Wf and S represent 
3D points), an optimal orthogonal transformation have to be 
determined.

The 3D data fitting problem has already been solved. A  
good review about the possible solutions is given in In this 
paper, we use the results o f ' for determining the optimal ro
tation and that o f  ̂  and * to determine optimal scale. Optimal 
scale parameter o f the / '*  frame can be written as

3.2. The iteration

The iteration algorithm described here is to minimize the fol
lowing so-called reprojection error in each step;

e =  IIW-Ai^'') 5^112 ( 11)

The algorithm consists o f  two main step; the S-step and the 
Af-step. It mns until a given iteration number is reached or 
until the difference between the new and the previous repro
jection errors is less than a given limit. The initial matrices 
are set to Aij.®̂  =  and Ŝ ®) =  S.

3.2.1. 5-step

Given 5^*“ *) and the goal is to determine 5^*' op
timally. Because the structure matrix has no constraint, its 
elements have arbitrary real values, the optimal value o f 5̂ *̂  
is given by the well-known least-squares (LS) optimization;

y/, ( 12)

where is the Moore-Penrose pseudo-inverse of

3.2.2. M-step

Estimating all M^P from A/|* and 5̂ *̂  is a more diffi
cult task, because the pseudo-inverse is not applicable in this 
step; the motion submatrices m P  must fulfill the orthonor
mality requirements; the first base vector represented by the 

first row of M f ' must be orthogonal to the second base vec
tor represented by the second row, and the length o f them 
must be unit (orthography) or the same (weak-perspective).

We can use nonlinear optimization methods to determine 
the angle parameters a y , Py and yy and the scale parame
ter qf. In our environment, Levenberg-Marquardt technique 
is applied. For this optimization technique, the determina
tion of the Jacobian matrix is needed. It is described in ap
pendix B. The determination o f the angles and scale pa
rameters from motion submatrices is also described in ap
pendix A.

Theorem  1 The algorithm described above converges.

Proof Both steps o f the algorithm reduces the reprojection 
error and the error cannot be negative. Therefore, the algo
rithm converges. □

9 /  = (9)

motion can be calculated as M j = VU^ if  the matrix H is
where wyp is the p'" column o f Wy. According to '5, optimal 
motion can be 
calculated as;

p

p=i
( 10)

and the singular value decomposition o iH  is H = UAV^.

4. Tests on synthetic data

Experiments with synthetic data have been carried out to 
study the properties o f  the proposed iterative method. In this 
experiments, we compare the efficiency of the original and 
the improved factorization methods.

For all tests, an object is generated as a point clouds by 
a Gaussian random number generator with zero mean and 
standard deviation 0 3 0 . Then the object is rotated randomly.

32



Levente Hajder /  Improvement of Factorization

No. o f points orig. error new error improvement (%)

4 18.457 16.170 12.39

6 11.934 11.059 7.33

8 39.685 39.296 0.98

10 23.675 21.628 8.65

12 9.7988 9.7540 0.46

14 15.123 15.532 -2.7

16 22.788 22.526 1.15

18 42.672 42.661 0.03

20 15.754 15.301 2.88

Table 1: Reconstruction errors versus the number o f points 
with 5% noise level.

No. o f points orig. error new error improvement (%)

4 22.336 20.220 9.47

6 26.947 25.211 6.44

8 25.679 25.384 1.15

10 35.423 32.936 7.02

12 28.405 25.195 11.3

14 40.228 40.411 -0.45

16 37.558 37.180 1.01

18 26.991 26.072 3.4

20 22.902 21.768 4.95

No. o f  points orig. error new error improvement (%)

17.756 16.979 4.39

37.484 26.528 29.23

35.816 31.930 10.85

10 39.480 40.445 -2.44

12 36.249 33.965 6.3

14 33.354 33.089 0.79

16 46.199 44.262 4.19

18 49.359 47.965 2.82

20 49.782 49.367 0.83

Table 2: Reconstruction errors versus the number o f points 
with 10% noise level.

The 3D points o f the objects are projected onto the image 
planes by a weak-perspective projection. Finally, 2D noise 
is added to every 2D point. The 2D noise is generated by 
a zero-mean Gaussian random number generator with stan
dard deviation CT2d . The object is reconstructed by both the 
original and the improved factorization. Then the differences 
between the reconstructed objects and the original object are 
calculated. This difference comes from the fitting error value 
defined in ^

This test is repeated with different noise levels: 
5%,10%,20%, where the noise level is defined as the 
<̂2d/ 0 3D quotient in percentage. The results are shown in 
Tables 1 ,2  and 3.

Table 3: Reconstruction errors versus the number o f points 
with 20% noise level.

The following conclusion can be drawn: if  an object con
sists o f a few points, the improved factorization method 
serves significantly better results.

5. Improving outlier rejection vrith the proposed
method

A very important component o f our previously published 
outlier rejection method is the determination of the mo
tion matrix from four points by the original Tomasi-Kanade 
factorization. We exchanged that component for the pro
posed factorization method and compared the original and 
the modified outlier rejection methods.

In the first test, an object is rotated and projected to the im
age planes and noise are added to each 2D point. Then incor
rect points with random data are inserted into the measure
ment matrix. Correct points are called inliers, while points 
o f random data are called outliers. Then the outlier rejec
tion method is run, and after it, the number of false positive 
errors (an inlier classified as an outlier) and false negative 
errors (an inlier classified as an outlier) are counted. We test 
the outlier rejection method with different noise levels. The 
measurement matrix contains 500 inliers and 250 outliers. 
The results o f the first test are shown is Table 4.

The second test is similar to the first one, the only one 
difference is that the number of inliers is 250 and the number 
of outliers is 500. The results are presented in Table 5.

Based on the result o f  the tests, the following conclusion is 
drawn: The quality o f  the results are significantly improved 
compared to the original method.

The proposed algorithm has also been tested on video se
quences. Sample frames fixrm the widely-known synthetic 
sequence ‘Hotel’ are shown in figure 1. Outliers are plotted

33



Levente Hajder /  Improvement o f Factorization

Noise level (%) Orig New

4 2/1 0/0

5 1/1 0/0

6 0/1 0/0

7 0/2 0/0

8 0/165 0/1

9 0/96 0/84

10 0/171 0/6

: 4: False negative and false positive i

Noise level (%) Orig New

4 1/0 0/0

5 1/0 0/0

6 0/0 0/0

7 0/4 0/0

9 0/49 0/5

8 0/107 0/1

10 0/200 0/13

Table 5: False negative and false positive errors.

with ‘x ’, while inliers with dots. In figure 2, test on a home
made real sequence is presented.

6. Conclusion and future work

We have proposed and tested a novel iterative factorization 
technique for structure from motion under weak-perspective. 
It has been shown that the new algorithm is more efficient 
than the original one. We have successfully applied the re
viewed factorization method for the problem o f  outlier re
jection. In the future, we plan to extend the theory to the 
perspective case, and we Uy to develop a novel factorization 
method based on the key idea of this paper which can handle 
the problem o f SfM  with missing data.

References

1. K. S. Arun, T. S. Huang, and S. D. Blostein. Least- 
squares fitting o f two 3-d point sets. IEEE Trans. Pat
tern Anal. Mach. Intel!, 9 (5 ):6 9 8 -7 0 0 ,1987. 3

2. Áke Björck. Numerical Methods for Least Squares 
Problems. Siam, 1996. 2

3. M. Brand and R. Bhotika. Flexible Flow for 3D Non- 
rigid Tracking and Shape Recovery. In IEEE Conf on 
Computer Vision and Pattern Recognition, volume 1, 
pages 312-322, December 2001. 1

4. Levente Hajder, Dmitry Chetverikov, and István Vajk. 
Robust Structure from Motion under Weak Perspective. 
In 2nd Symposium on 3D Data Processing, Visualiza
tion and Transmission (3DPVT), Sept 2004. 1 ,4

5. B.K.P. Horn. Closed-form solution of absolute orien
tation using unit quaternions. Journal o f the Optical 
Society o f America, 4:629-642, 1987. 3 ,4

6 . B.K.P. Horn, H.M. Hilden, and S. Negahdaripourt. 
Closed-form solution o f absolute orientation using or
thonormal matrices. Journal o f the Optical Society of 
America, 5(7);1127-1135,1988. 3 ,4

7. A. Lorusso, D. W. Eggert, and R. B. Fisher. A compari
son o f four algorithms for estimating 3-d rigid transfor
mations. In BMVC '95: Proceedings o f the 1995 British 
conferertce on Machine vision (Vol. I), pages 237-246, 
Surrey, UK, UK, 1995. BMVA Press. 3

8 . T. Morita and T. Kanade. A Sequential Factorization 
Method for Recovering Shape and Motion from Image 
Streams. In ARPA Image Understanding Workshops, 
volume II, pages 1177-1188, November 1994. 2

9. C. J. Poehnan and T. Kanade. A Paraperspective Fac
torization Method for Shape and Motion Recovery. 
IEEE Trans, on PAMI, 19(3);312-322, March 1997. 1

10. P. Sturm and B. Triggs. A Factorization Based Algo
rithm for Multi-Image Projective Structure and Motion. 
In ECCV, volume 2, pages 709-720, April 1996. 1

11. C. Tomasi and T. Kanade. Shape and Motion from 
Image Streams under orthography: A factorization ap
proach. Inti. Journal Computer Vision, 9:137-154, 
November 1992. 1

12. L. Torresani, D .B . Yang, E.J. Alexander, and C. Bregler. 
Tracking and Modelling Nonrigid Objects with Rank 
Constraints. In IEEE Conf. on Computer Vision and 
Patter Recognition, 2001. 1

13. Michael W. Walker, Lejun Shao, and Richard A. Volz. 
Estimating 3-d location parameters using dual number 
quaternions. CVGIP: Image Underst., 54(3):358-367, 
1991. 3

14. D. Weinshall and C. Tomasi. Linear and Incremental 
Acquisition o f  Invariant Shape Models From Image Se
quences. IEEE Trans, on PAMI, 17(5):512-517, 1995. 
1,2

15. J. Xiao, J.-X. Chai, and T. Kanade. A closed-form solu
tion to non-rigid shape and motion recovery. In ECCV 
("4j, pages 573-587, 2004. 1

34



I
Appendix A: Elements o f  a 2 x  3 submatrix o f  a 3 x  3 
orthogonal matrix.

while the derivatives o f the even rows are expressed as

Levente Hajder /  Improvement o f Factorization

If the 2 X 3 orthogonal matrix denoted by A is given, its ele
ments can be written as the functions of the four parameters; 
a , P, Y and q (three rotation and a scale parameters). If a  is 
the rotation around the x  axis, p around y axis and Y around 
z axis, the elements o f matrix A can be written as follows:

rtn
021

022 013
022 023

where

a n  =  ^cosacosP
012= ^(sinacosY—cosasinpsinY)
013= ^(sinasinY+cosasinPcosY) 
ü 2\ —  —̂ sinacosP
022= 9 (cosacosY-l-sinasinpsinY)
023 =  ^(cosasinY—sinasinPcosY)

Appendix B: Jacobian matrix o f  the error function.

Given the error function e  =  11 —Ai/5| | where S is a 3 x  P,
Wy a 2 X P  and A/y a 2 x  3 orthogonal matrix and all elements 
of M f can be written as the functions o f angles and scale, the 
Jacobian matrix o f  the error function with respect to the three 
angles and the scale is as follows;

J =

■ 3£| 3̂ 1 dE\ 3iSi
^  ^  ^

^Etf 3i?iF 3E2F BEif 
- do.f 5y7 dqj .

where £,■ is the row o f the error matrix E = W — MS. The 
elements o f the Jacobian matrix can be expressed as follows: 
For the odd rows, the derivatives are:

3 a /

3£-2* y - i
3py

I p = i9 / [ ( - s 'n « /c o s P y ) ip i

+  (cos ay cos Yy -I- sin ay sin Py sin Yy )ip2 

+ (— sin ay sin Py cos Yy +  cos ay  sin Yy)ip3]

I ^ i 9/ [ ( - c o s a y s in p y ) ip i

- t -

^^2» / - l
3Yy

(cos a y  cosPy sin Yy )ip2 

(cos a y  cos Py COS yf)Sps]

I p = l 9 / [ 0 i p i

-  (sinaysinYy +  cosaysinPycosY y)ip2 
+  (— COS a y  sin Py sin Yy +  sin a y  cos Yy )ip3]

_  p

dq/ I p = l 9y[(c0SayC0Spy)jpi

-I- (sinaycosY y — cosaysinPysinYy)rp2 

-1- (cos a y  sin Py cos Yy -I- sin a y  sin Yy )ip3],

3 a’■/
Ip=l^ /[(-C O SayC O sP y)ip i

-I- (— sin a y  cos Yy COS a y  sin py sin Yy)ip2 

— (sin aysin  Yy+ cosaysinpycosY y)rp3]

3£2»y 
3py -  

- 1-

^E 2 tf _  
d j f

9y[(sm aysin py)sp i

(sinayCOsPy sinYy)rp2 

(sin ay  cospy  cosYy)Sp3]

I p = i i / l O i p i

4- ( - cosaysinY y-1-sinaysinpycosY y)ip2 

+  (cos a y  cos Yy -t- si n a y  sin py sin Yy )ip3]

^^ 2 * / _  .^p
dq/

I p = i 9/ [ ( - s in a y c o s p y ) ip ,

+  (cos ay  cos Yy 4- sin a y  sin Py sinYy )rp2 

4- (cosaysinY y — sinaysinPycosYy)sp3].

35



Levente Hajder /  Improvement o f Factorization

Figure 1: Results for ‘Hotel’ sequence, ‘x ’ is a detected outlier.

Figure 2: Results for a real sequence, ‘x ’ is a detected outlier.

36



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Building Photorealistic Models Using Data Fusion

Z. Jankó, E. Lomonosov and D. Chetverikov

Computer and Automation Research Institute, Budapest, Kende u. 13-17, H-1111 Hungary 
and Eötvös Loránd University, Budapest

Abstract
We are currently working on several projects related to the automatic fusion and high-level interpretation o f 2D 
and 3D sensor data for building models o f real-world objects and scenes. One o f our major goals is to create 
rich and geometrically correct, scalable photorealistic 3D models based on multimodal data obtained by different 
sensors, such as camera and laser scanner. In this paper, we present a sophisticated software system that processes 
and fuses geometric arul image data using genetic algorithms and efficient methods o f computer vision.

1. Introduction

Thousands of cultural heritage objects around the world are 
in the danger of being lost. During the last years a num
ber o f ambitious projects have been started to preserve these 
objects by digitalising them. Examples o f such projects are 
the Michelangelo Project ®, the Piéta Project  ̂ and the Great 
Buddha Project

There exist different techniques to reconstruct the object 
surface and to build photorealistic 3D models. Although the 
geometry can be measured by various methods o f computer 
vision, for precise measurements laser scanners are usually 
used. However, most o f laser scanners do not provide texture 
and colour information, or if  they do, the data is not accurate 
enough.

Our photorealistic modelling system receives as input two 
datasets o f diverse origin: a number o f partial measurements 
(3D point sets) o f the object surface made by a hand-held 
laser scanner, and a collection o f high quality images of the 
object acquired independently by a digital camera. The par
tial surface measurements overlap and cover the entire sur
face of the object; however, their relative orientations are 
unknown since they are obtained in different, unregistered 
coordinate systems. A specially designed genetic algorithm 
(GA) automatically pre-aligns the surfaces and estimates 
their overlap. Then a precise and robust iterative algorithm 
(Trimmed Iterative Closest Point, TrICP *) developed in our 
lab is applied to the roughly aligned surfaces to obtain a pre
cise registration. Finally, a complete geometric model is cre
ated by triangulating the integrated point set.

The geometric model is precise, but it lacks texture and 
colour information. The latter is provided by the other 
dataset, the collection o f digital images. The task of precise 
fusion o f the geometric and the visual data is not trivial, since 
the pictures are taken freely from different viewpoints and 
with varying zoom. The data fusion problem is formulated 
as photo-consistency optimisation, which amounts to min
imising a cost function with numerous variables which are 
the internal and the external parameters o f the camera. An
other dedicated genetic algorithm is used to minimise this 
cost function.

When the image-to-surface registration problem is solved, 
we still face the problem of seamless blending o f multiple 
textures, that is, images o f  a surface patch appearing in dif
ferent views. This problem is solved by a surface flattening 
algorithm that gives a 2D parameterization o f the model. Us
ing a measure of visibility as weight, we blend the textures 
providing a seamless and detail-preserving solution.

All major components o f the described system are origi
nal, developed in our laboratory. Below, we briefly present 
the main algorithms and give examples o f photorealistic 
model building using GA-based registration and fusion of 
spatial and pictorial data.

2. Pre-registration o f  surfaces using a genetic algorithm

This section deals with genetic pre-alignment o f two arbi
trarily oriented datasets, which are partial surface measure
ments o f the object whose model we wish to build. The task 
is to quickly obtain a rough pre-alignment suitable for sub
sequent application of the robust Trimmed Iterative Closest

37



Jankó e te d / Photorealistic Models

Point algorithm * developed in our lab earlier. Our expe
rience with TrICP shows that, depending on the data pro
cessed, the algorithm can cope with initial angular misalign
ments up to 20°; 5° is certainly sufficient. This means that 
the genetic pre-registration should provide an angular accu
racy o f 5°, or better.

Our genetic pre-registration procedure minimises the 
same objective function, T'(^, R, t), as TrICP, but this time as 
a function of 7 parameters, namely, the overlap the three 
components o f the translation vector t, and the three Euler 
angles o f the rotation matrix R. The difference between the 
genetic solution and the overlap optimisation procedure ' is 
essential. The former means evaluating 'P (^ ,R ,t) for dif
ferent values o f R, and t, while the latter means running 
TrICP for different values of

To minimise the objective function 'P (4 ,R ,t), we applied 
a genetic algorithm tuned to the problem. To evaluate the 
objective function, each integer parameter was mapped by 
normalisation onto a real-valued range. Simple one-point 
crossover was employed. Different population sizes were 
tested and an optimal value was selected for the final exper
iments. Two mutation operators were introduced. Shift mu
tation shifts one parameter randomly by a value not exceed
ing 10% of the parameter range, while replacement mutation 
replaces a parameter with a random value. The correspond
ing probabilities were also set after preliminary experimen
tation. Tournament se leaion  was applied, as it is easy to im
plement and helps avoid premature convergence. An elitist 
genetic algorithm was employed, where one copy of the best 
individual was transferred without change from each gener
ation to the next one.

The method is presented in detail in our paper The main 
steps of the genetic algorithm are as follows:

1. Generate initial population.
2. Calculate objective function values.
3. Apply genetic operators (crossover, mutation) to selected 

individuals. Next generation will contain the offspring 
and, additionally, the best fit individual from current gen
eration.

4. Calculate objective function values for the new popula
tion.

5. If best fitness has not changed for Ng generations, stop 
and designate the best fit individual as solution, otherwise 
go to step 3.

6 . If the solution obtained at step 5 is not o f acceptable pre
cision, restart from step 1.

We have tested the genetic pre-alignment and the com
bined method (GA followed by TrICP) on different data. 
Two examples, the Angel and the Bird data, are shown in 
figures 1 and 2, respectively. To test the method under arbi
trary initial orientations, set V  was randomly rotated prior to 
alignment in each o f the 100 tests. Results o f all tests were 
visually checked. No erroneous registration was observed. 
Typical examples o f alignment are shown in figures 1 and 2.

In each figure, the first two pictures show the two datasets 
to be registered. The datasets result from two separate mea
surements o f the same object obtained from different angles.

The third picture o f each figure (GA) displays the re
sult o f our genetic pre-registration algorithm. Here, the two 
datasets are shown in different colours. One can see that the 
datasets are roughly registered, but the registration quality is 
not high; the surfaces are displaced, and they occlude each 
other in large continuous areas instead o f ‘interweaving’. Fi
nally, the rightmost picture is the result o f  the fine registra
tion obtained by TrICP using the result o f the genetic pre
registration. Here, the surfaces match much better, and they 
are interwoven, which is an indication o f the good quality o f  
the final registration.

3. Fusion o f surface and im age data

In this section, we address the problem o f combining ge
ometric and textural information o f the object. As already 
mentioned, the two sources are independent in our system; 
the 3D geometric model is obtained by 3D scanner, then cov
ered by high quality optical images. First, we discuss our 
photo-consistency based registration method with genetic 
algorithm based optimisation. Then we deal with the task 
of blending multiple texture mappings and present a novel 
method which combines the techniques o f surface flattening 
and texture merging. Finally, test results on synthetic and 
real data are shown.

3.1. Registering im ages to a surface m odel

Based on our previous paper let us discuss the registra
tion of images to a 3D model. The input data consists of 
two colour images, I\ and h ,  and a 3D siuface model. They 
represent the same object. (See figure 3 for an example.) The 
images are acquired under fixed lighting conditions and with 
the same camera sensitivity. All other camera parameters 
may differ and are unknown. The raw data is acquired by 
a hand-held 3D scanner, then processed by the efficient and 
robust triangulator ‘ developed in our lab. The 3D model ob
tained consists o f a Uiangulated 3D point set (mesh) V  with 
normal vectors assigned.

The finite projective camera model is used to project the 
object surface to the image plane: u ~  PX, where u is an 
image point, P  the 3 x  4 projection matrix and X a surface 
point. ( ~  means that the projection is defined up to an un
known scale.)

The task o f registration is to determine the precise projec
tion matrices, P\ and Pi, for both images. Since the projec
tion matrix is up to a scale factor, it has only 11 degrees of 
freedom in spite o f  having 12 elements. The collection of the 
11 unknown parameters is denoted by p, which represents 
the projection matrix P  as an 11-dimensional parameter vec
tor.

38



Jankó et al / Photorealistic Models

Angel data GA GA+TrICP

Figure 1: The Angel dataset, GA alignment and final alignment.

Bird data GA GA+TrlCP

Figure 2; The Bird dataset, GA alignment and final alignment.

Values o f the two parameter vectors p\ and pz are sought 
such that the images are consistent in the sense that the cor
responding points -  different projections of the same 3D 
point -  have the same colour value. (It is assumed that the 
surface is Lambertian.) This type o f consistency is called 
photo-consistency A robustified photo-consistency based 
cost function, C^{p[ , pz),  was introduced in our paper The 
minimum of C,j,(pi, pz) gives a good estimation for the pro
jection matrices.

Although the cost function is simple, it has unpredictable 
shape in the multidimensional parameter space. The stan
dard local and global nonlinear minimisation techniques we 
tested failed to provide reliable results. Finally, we decided 
to apply a genetic algorithm, as a time-honoured global 
search shategy.

We pre-register the images and the 3D model manually. 
This yields a good initial state for the search, which nar
rows the search domain and accelerates the method. Manual 
pre-registration is reasonable since this operation is simple 
and fast compared to the 3D scanning, which is also done 
manually. The photo-consistency based registration makes 
the result more accurate.

The genetic algorithm starts by creating the initial pop
ulation. The individuals o f the population are chosen from 
the neighbourhood o f the parameter vector obtained by the 
manual pre-registration. The values o f the genes are from 
the intervals defined by the pre-registered values plus a mar
gin of ± e . In our experiments e was set to values between 
1% and 3%, depending on the meaning and the importance

o f the corresponding parameter. The individual that encodes 
the pre-registered parameter vector is also inserted in the ini
tial population to avoid losing it.

We have tested the method with a number o f different 
genetic settings. With proper settings, the projection error 
o f registration can be decreased from 18-20 pixels (the av
erage error o f the manual pre-registration) to 5-6 pixels. 
After preliminary testing with semi-synthetic data, the fol
lowing genetic setting has been selected: Steady state algo
rithm with Tournament selector. Swap mutator and Arith
metic crossover, with 250 individuals in the population, with 
mutation probability o f 0.1 and crossover probability o f 0.7. 
The typical running time with a 3D model containing 1000 
points was 5 -6  minutes on a 2.40 GHz PC with 1 GB mem
ory.

We applied the method to different real data. One o f them, 
the Bear Dataset, is shown in figure 3. The precision o f the 
registration can be best judged at the mouth, the eyes, the 
hand and the feet o f the Bear. Figure 4 visualises the dif
ference between the manual pre-registration and the photo
consistency based registration. The areas o f  the mouth, the 
eyes and the ears show the improvement o f the quality.

3.2. M erging m ultiple textures

After registering the images to the 3D model, they can be 
mapped to the surface. Usually one image can show only 
one part o f the model, but a number o f images o f the same 
object taken from different viewpoints can cover the whole.

39



Jankó et a l/Photorealistic Models

Images 3D model Textured model

Figure 3: The Bear Dataset and result o f registration o f images to surface.

Manual Genetic

Figure 4: Difference between manual pre-registration and genetic registration.

Below, we discuss the problem of combining partial overlap
ping textures and present a novel method for it.

To paste texture to the surface of an object, we need two 
pieces o f information; a texture map and texture coordinates. 
Tlte former is the image w e paste, while the latter specify 
where it is mapped to. Texture coordinates can be deter
mined by a texture mapping function, for instance, by ap
plying projection matrix P  to 3D point X.

Figure 5a shows two images of the globe, which can be 
considered as texture maps. Merging the two texture maps 
to one is not obvious. Creating an image by appending the 
second image to the first one and modifying the second pro
jection matrix with a translation yields gap between the bor
der o f the textures.

There exists an other way to create a texture map based on 
the images. Flattening the surface of the object yields also a 
two-dimensional parameterization. The advantage o f this pa
rameterization is that it preserves the topology of the three- 
dimensional mesh. A texture that covers entirely the flat
tened 2D surface covers also the original 3D surface. Con
verting optical images to flattened surfaces yields partially 
textured meshes, but since flattening preserves the structure 
of the 3D mesh, these texture maps can be merged, in con
trast to the optical images.

We use the algorithm '' developed in our lab to flatten 
and parameterize triangular meshes. After this one needs to 
convert the optical images to flattened texture maps. Since 
the transformation of flattening cannot be represented by a 
matrix, we have to use the mesh representation for conver
sion. Given a triangle o f the mesh, consider the known cor
responding triangles in the optical image and on the flat
tened surface, respectively. The affine transformation be
tween them can be easily determined. This transformation 
gives the correspondence between the points o f  the triangles. 
Note that the affine transformation is unique for each triangle 
pair. The process o f converting optical images to flattened 
texture maps is illustrated in figure 6 .

Merging partial texture maps may cause a problem in the 
overlapping areas. To eliminate the seams appearing at the 
borders o f the texture maps, w e blend the views as follows. 
For each triangle all the views are collected which the given 
triangle is entirely visible from. A measure of visibility of 
a 3D point is the scalar product o f the normal vector and 
the unit vector pointing towards the camera. This measure is 
used to set a weight for each view: If the point is better visi
ble from the view, the weight is greater. To set the colour of 
a point, all o f these views with their weights are combined.

The method has been tested both on synthetic and real 
data. The Earth Dataset consists o f  8 images of the globe

40



Jankó et al /  Photorealistic Models

a. Input Images b. Partially Textured Model

Figure 5: Textures cover only parts o f the model.

Partial textures

Figure 6: Partial and merged texture maps.

Merged texture

and a synthetic 3D model. Figure 7 shows two of the in
put images, the merged texture map and a snapshot o f the 
textured 3D model. Applying the method to real data is il
lustrated by figure 8 . The projection matrices o f the images 
of the Bear Dataset were obtained by our photo-consistency 
based registration method described earlier.

4. Conclusion

We have presented a software system for building photore
alistic 3D models. It operates with accurate 3D model mea
sured by laser scanner and high quality images of the ob
ject acquired separately by a digital camera. The complete 
3D model is obtained from partial surface measurements us
ing a genetic based pre-registration algorithm followed by a 
precise iterative registration procedure. The images are reg
istered to the 3D model by minimising a photo-consistency 
based cost function using a genetic algorithm. Since textures 
extracted from images can only cover parts o f the 3D model, 
they should be merged to a complete texture map. A novel 
method is used to combine partial texture mappings using 
surface flattening. Test results with synthetic and real data 
demonstrate the efficiency o f the proposed methods. Our 
next step will be adding the surface roughness by measur
ing the bumps maps using a photometric stereo approach.

Acknowledgements

This work is supported by EU Network o f  Excellence MUS
CLE (FP6-507752).

References

1. D. Chetverikov, D. Stepanov, and P. Krsek. Robust Eu
clidean Alignment o f 3D point sets: the Trimmed Iter

ative Closest Point algorithm. Image and Vision Com
puting, 23:299-309,2005. 1 ,2

2. F. Bemardini et al. Building a digital model of 
Michelangelo’s Florentine Pietá. IEEE Comp. Graph
ics & Applications, 22(iy.59-67,2002. 1

3. K. Ikeuchi et al. The great Buddha project: Modeling 
cultural heritage for VR systems through observation. 
In Pwc. IEEE ISMAR03,2003. 1

4. M.J. Clarkson et al. Using photo-consistency to register 
2D optical images of the human face to a 3D surface 
model. IEEE Tr. on PAMI, 23:1266-1280, 2001. 3

5. Z. Jankó and D. Chetverikov. Photo-consistency based 
registration of an uncalibrated image pair to a 3D sur
face model using genetic algorithm. In Proc. 2'^ Int. 
Symp. on 3D Data Processing, Visualization & Trans
mission, pages 616-622 ,2004 . 2 ,3

6 . G. KÓS. An algorithm to triangulate surfaces in 3D 
using unorganised point clouds. Computing Suppl., 
14:219-232,2001. 2

7. G. KÓS and T. Várady. Parameterizing complex triangu
lar meshes. In Proc. 5'* International Conf on Curves 
and Surfaces, pages 265-274, 2003. 4

8 . E. Lomonosov, D. Chetverikov, and A. Ekát. Fully au
tomatic, robust and precise alignment o f measured 3D  
surfaces for arbitrary orientations. In 28'* Workshop o f 
the Austriem Association for Pattern Recognition, pages 
39-46 ,2004 . 2

9. M. Levoy et al. The digital Michelangelo project. 
ACM Computer Graphics Proceedings, pages 131-144, 
2000. 1

41



Jankó et al /  Photorealistic Models

Images Texture Map Textured Surface

Figure 7: Result o f texture map merging for the Earth data.

Images Texture Map Textured Surface

Figure 8 : Result o f texture map merging for the Bear data.

42



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Road Traffic Monitoring by Video Processing

Szabolcs Czuczor

Depaitment of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
The number o f road vehicles and therefore the intensity o f the road traffic is increasing day by day. Drivers 
need more accurate and real-time information about the traffic and the possibility o f jam. The internet and the 
mobile technology make almost any information accessible inside the car. I f there was an interactive city map with 
information about the number o f moving vehicles on the road and their speed, drivers always would be able to 
calculate the most ideal route to reach their target and avoid the traffic jam. All around our capital city there are 
video cameras that provide real-time visual information about sections o f roads, important crossings and road 
junctions. These video signals are monitored by the police arul the public transport companies, but at the moment, 
because o f technical reasons and privacy issues, there is no opportunity to give this information to the hands of 
the public. This paper presents an adaptive video processing application, which is currently under development, 
and whose task is to recognize the individual road vehicles, count and classify them and determine their speed 
independently on the weather and lighting conditions. Visualizing these numbers on a city map, we can easily 
avoid the above mentioned problems and can help drivers on the road interactively.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Scene Analysis]: Motion, Tracking

1. Introduction

Today image sequence based road traffic monitoring is an 
actual research field o f image processing. To have control 
on the roads and be able to provide enough information 
about the intensity o f the road traffic all over the city, we 
need many viewpoints in different places, on different road 
junctions. Each one o f these video cameras watches differ
ent areas o f the city where also the position, orientation and 
perhaps other parameters o f  the cameras are different, so do 
the lighting and weather conditions. These criteria demand 
a very flexible and adaptive monitoring system that needs 
only a few tuning parameters as setup or pre-adjustment. 
The outdoor being o f these cameras are also important when 
we want to design the dataflow between the camera and the 
video processing system. Could we deploy an outdoor com
puter near the camera, or it is too expensive and do we need 
to take it into an indoor station and transport the high band
width video stream through the city, which is also an expen
sive solution?

Our task was to implement an image processing applica
tion that monitors the downtown road traffic unaffectedly by 
lighting and visible weather conditions, can be run real-time 
on a relatively modem PC, and measures the average speed

and the intensity o f  the traffic. In other words, its output is 
the number, the category and the average speed o f the mov
ing vehicles. The aerial method described in ‘ is very effec
tive in case o f highway shots taken from the air. The speed 
and orientation o f  vehicles are nearly constant, and because 
o f the big area that can be watched the 1.2 seconds process
ing time between image samples is also satisfying. In case 
of downtown traffic the observable area is much smaller, 
where the vehicles follow each other rapidly, thus the frame 
rate must be higher. In ’ we can meet powerful vehicle 
and object recognition and tracking systems, but one o f their 
biggest problem (which is ours too) the occlusion o f the ob
jects. The problem o f occlusion is also mentioned in but 
we cannot exploit the behavioral and motion differences o f  
objects as we could in case o f an occluding human and a car. 
In * the problem o f occlusion is solved by modeling the ma
jor color regions (blobs) o f the body. In our case this method 
is replaced by feature (object or texture) tracking which is 
also used in ’’ because o f the unpredictable variety of color 
and shape o f vehicles.

The structure o f this paper is the following: in Section 2 
we present the preprocessing and already operational steps 
of our algorithm. In Section 3 the functionalities and features

43



Szabolcs Czuczor/Road Traffic Monitoring by Video Processing

will shown, which are still under development. While Sec
tion 4 talks about our tasks for the next few months, which 
are to make the algorithm more flexible, robust and faster. 
Section 5 presents our actual results. At the end o f our paper, 
in Section 6 we have a little discussion about the opportuni
ties and the applications of this algorithm.

2. Algorithm steps

The most important input o f  the algorithm is a real-time, 
PAL system^ digitized video stream. To avoid the artifacts 
caused by interlaced being o f the signal and the 4:2:0 color 
coding, we use just CIF^ resolution. We can do that, because 
there is no need for so high resolution and besides this, work
ing on lower resolution, we win a lot o f process time. Cur
rently the test sequences are loaded from CIF size MJPEG 
coded AVI files, which were pre-recorded from different 
cameras, in different viewpoints o f  Budapest. The other in
puts o f the algorithm are additional parameters, whose value 
depend on the actually processed scene and are set by the 
observer.

In the following subsections we describe each step of the 
algorithm, which is needed to provide traffic-related infor
mation from the source video.

2.1. Background generation

There are many different foreground-background separation 
techniques used in object recognition and object tracking. Of 
course, simple frame differencing and background subtrac
tion techniques give usually low performance. In * a novel 
and very efficient approach of foreground-background- 
shadow separation is proposed, but it is very time consum
ing. 1-2  seconds or more time cannot be allowed for a real
time application, except when we record image sequences 
in specified periods and evaluate them off-line. This could 
cause 10-20  minutes delay in the flow o f the traffic informa
tion, which is unacceptable.

Our frame differencing method might give sometimes 
hardly processable data, but it is very fast. One or two 
“dropped” frames caused by noise are still acceptable, which 
will be proven in Section 3.1. The video signals are provided 
by stable cameras. It means that subtracting two neighbor
ing frames results a difference image, which shows only the 
elementary motion o f moving objects and the sudden light 
changes. The width o f these difference patches is nearly pro
portional to the time between the two frames. Because o f the 
non-uniform surface o f vehicles (the different parts o f them:

t  PAL system: interlaced, 720 x  576 or 704 x 576 pixel resolution 
frames, 25 FPS (50 field per second) frame-rate, YUV 4:2:0 color 
coded video signal
Í  CIF: Common Intermediate Format, quarter PAL (progressive, 
352 X 288 pixel resolution frames, 25 FPS frame-rate)

floor, engine hood, windscreen, dazzle lamps, wheels, tires, 
roof rack, door etc.) these patches have a lot o f gaps. If we 
increase the time between the two neighboring frames used 
for differencing, these patches will be broaden. Overlapping 
these difference images, generating lists o f them, choosing 
proper list length, then overlapping and masking these lists 
with each other, we can get nearly solid shapes o f the mov
ing objects that can be called motion mask (see Figure 1).

real moving object -----

difference image (dist.; 2 frames) 

image list #1 

image list #2

lists overlapped (masked)

Figure 1: Generating motion mask: (1) differencing frames 
from 2 frame-time distance, (2) overlapping difference im
ages and generating image list, (3) another image list is 
made with a list-length delay, (4) masking the lists with each 
other the result is the motion mask

If we work on gray-scale images and use well chosen dif
ferencing threshold and gamma correction, the resulting im
age can be a binary (black-and-white) image. Now it is sure 
that the motion mask covers moving objects, and the remain
ing pixels covers just static background (See Figure 2).

Gathering the static background pixels from the original 
frames, we can build an empty background image that does 
not contain any moving objects. Subtracting this static back
ground from the actual frame, we can get only the moving 
objects o f the scene as a difference (see Figure 3 top right).

One big problem with this background generation ap
proach is that we are outdoor, and as the time goes by the 
lighting conditions are changing (the sunlight is changing, 
the clouds are moving etc.). We need to refresh the back
ground with a well chosen latency (or inertia) to follow the 
slow fluctuation of lights, but avoid the effects o f sudden 
changes (e.g. lens flare, sunlight twinkle on the windscreen 
o f the cars etc.). That is why we have to create a FIFO^-type 
image buffer with a predefined length (in our case it’s length 
is 12 seconds i.e. 300 frames) to make the background up- 
to-date.

Working with this static, but yet always refreshing back
ground, we still cannot be happy. The cameras are self
calibrating devices that always try to balance the histogram

§ FIFO: First In First Out

44



Szabolcs Czuczor/Road Traffic Monitoring by Video Processing

(I

Figure 2: Top left and right: two frames from the original 
color image sequence with 2 frame time (80 ms) between 
them; bottom left: their gamma corrected difference; bottom 
right: motion mask

we can decide if  it is a pedestrian or a vehicle. See Sec
tion 3.2 for a method that help pedestrian-vehicle separa
tion. Now we can give IDs to the silhouettes (for example by 
painting them with different colors, see Figure 3) and then 
they can be tracked frame by frame.

%
o f the image to avoid the overflow o f the pixel intensities. 
So when the camera looks at the asphalt in a sunny day and 
suddenly a big white van comes into the screen, the whole 
image goes into dark to compensate the huge amount o f high 
intensity pixels. In this case the real-time generated static 
background should be darkened too.

2.2. Object detection

The subtraction of the real-time generated, lightness com
pensated static background and the actual frame results a 
difference image, which contains only the moving objects o f  
the scene. After well chosen gamma correction and thresh
old, a noise filtering pass can be applied to keep only the 
useful information. Median Alter (for instance with 3 x 3  
kernel) is able to remove pixel size salt and pepper noise and 
can melt together areas with small gaps and holes between 
or inside them. This can remove the noise caused by birds or 
leafs o f wind blown trees, and can correct the split silhouette 
of vehicles caused by their small background colored parts.

After noise filtering, a one pixel wide white-area-spread 
effect (also known as dilate) can be applied to broaden the 
visible parts o f  moving objects. As a result o f this effect the 
size o f patches is not increased especially, but considering 
visibility aspects, it can be useful.

This time we have several independent silhouettes of 
moving objects that can be big or small vehicles and of 
course pedestrians. In a lucky case the camera does not see 
any pavements or other places where pedestrians can be 
found, hence each silhouette belongs to a vehicle. In a lesser 
lucky case we can measure the area o f the silhouettes, and 
knowing the distance o f the given object from the camera.

Figure 3: Original frame, the difference image with the de
tected moving objects and their painted silhouettes

Unfortunately, some of the objects are often too close or 
occlude each other. In this case their silhouettes are melted 
together and if  we paint them by flood-fill method, those two 
(or more) vehicles will be recognized as one. To avoid this, 
we have to apply some pattern tracking method on the orig
inal image considering on the silhouettes on the difference 
image. Also the area o f the painted silhouettes can hold use
ful information to detect attaching individuals or detaching 
previously occluding objects. More about this in Section 3. 
Examining the image sequence, it is very important that the 
object IDs (or silhouette colors) remain frame by frame con
sequently. We mustn’t repaint each object in each frame but 
we have to take its past into attention. This task can be very 
difficult if  we meet the problem o f occlusion, because in that 
situation two or more objects have the same ID (or color) in 
the past.

3 . U nderdevelopm ent

In this Section those subsystems and tasks are presented that 
are under development at the moment. The deadline of the 
project is the end of year 2005, so after writing this article, 
many improvements are expected.

3.1. M anaging objects’ lifetime

Suppose that we have detected all o f the possible moving 
objects in the scene well. It is time to count them and mea
sure their speed. Well managed ID allocation makes us able

45



r

to define the lifetime of the different objects. When an ob
ject comes into the screen and get a new ID, we could say 
that it is bom. Some frames later it goes out of the screen, 
it disappears, we could say that it dies. Between these two 
moments we track it, and because we know some 3D infor
mation of the scene (refer to Section 3.2), we can calculate 
its speed. The time is already known, it can be calculated 
easily, because in PAL system each frame follows the other 
in 40 ms.

What about the “dropped” frames mentioned in Sec
tion 2.1? The lifetime manager should take care of the con
tinuity of appearance and movement of objects. It should 
be insensible to sudden appearance and/or disappearance 
caused by dropped frames and noise and, of course, to occlu
sion caused by other objects. The presence of an object can 
be modeled by measuring the area of its silhouette (counting 
the pixels in it). Figure 4 shows the lifetime of an object as 
the area of its silhouette in time. It should change continu
ously, and if a dirac-like change happens, it can be left out 
of consideration by a low-pass filter applied on it.

J,-, , .

Szabolcs Czuczor/Road Traffic Monitoring by Video Processing

Figure 5: Aligning a grid to the image to get 3D information 
from the scene

passes in front of the camera, which is too small to accept 
as a vehicle. The worst two cases are when these smaller 
objects have almost exactly the same size as the threshold 
value of the size evaluator subsystem, or when these objects 
occlude one or more vehicles and results false decision about 
the kind of the object. In the first case the result is a lot of 
sudden appearance and disappearance of an object, which 
can also be perturbed by noise and causes jumps and breaks 
in the lifetime curve of an object (remember Figure 4). In 
the second case the simple flood-fill method used in object 
detection and object tracing (mentioned in Section 2.2) also 
melts more objects into one huge object. In this situation our 
only hope is the pattern tracking, which is described in the 
following point (Section 3.3).

Figure 4: The lifetime (or presence) o f a moving object with 
two sudden chcmge that should be by-passed

After following the lifetime of the moving objects, we will 
be able to count the niunber of them in a given time unit, 
which will represent the first output of the algorithm. The 
second output is the average speed that can be calculated 
by averaging the speed of all moving objects according to 
their lifetime and tracking information. More about object 
tracking can be found in Section 3.3.

3.2. 3D description of the scene

Usually the locations watched by the cameras are flat sur
faces. Aligning a simple grid to it (and, of course, taking the 
lens distortion '® into account) helps us to determine the rel
ative size and distance of the passing objects from the view
point. If we tell the system the size of the grid, then we can 
approximate the absolute size of the objects (or the area of 
their surface in the screen). See Figure 5.

Knowing the size of the objects, we are able to decide if 
an object is big enough to accept it as a vehicle or we should 
ignore it, because it is just a pedestrian or a smaller animal 
(dog, cat, bird etc.). Unfortunately this approach has several 
drawbacks and difficulties: for example a group of pedestri
ans can have relatively big surface, therefore it can be rec
ognized as a vehicle. Sometimes a bike or a bicycle rider

3.3. Pattern tracking to avoid occlusion problems

Pattern tracking is a common method for motion detection 
by finding similarities between frames of a video source or 
an image sequence and bind them by motion vectors. This 
method compares the pixel values of a small region from the 
“source” frame with the corresponding pixels in its neigh
borhood from the “destination” frame. Usually the result is 
evaluated by calculating the minimal mismatch error as the 
summed square of difference of each corresponding pixel. 
This task is very time consuming depending on the size of 
the searched pattern and the size of its neighborhood.

It is a good question that how large pattern should we 
choose, what shape should it have, and how much neighbor
hood do we need to scan to find similarity. In the most sim
ple case the moving vehicle has an easy to delimit silhouette 
that can be used as a binary mask to define those pixels on 
the “source” frame that we compare with the neighborhood 
on the “destination” frame when we look for similarities. 
This mask and its masked texture are stored in the memory 
as a small image defined by the axis-aligned bounding box 
of the silhouette (see Figure 6). The mask and the stored tex
ture should be updated frame by frame to have always actual 
image of the vehicle.

In case of occlusion we cannot follow the pattern of the 
full vehicle because it is behind another vehicle (see Fig- 
ine 7). Of course, we can predict its position even if we

46



Szabolcs Czuczor /  Road Traffic Monitoring by Video Processing

Figure 6: Detected object, its silhouette surrounded with its 
bounding box and the masked pattern

cannol see it using its motion vectors, but what if its speed 
changes? The problem could be solved by the method pro
posed in ’ if the occlusion is just partial and we are able 
to follow the vehicle behind. It can also happen when two 
or more occluding vehicles pass by in front of the camera 
with the same relative speed. In this case we can refer to this 
group as one vehicle, however, it is not.

Figure 7: The problem o f occlusion: fused silhouettes of a 
car and a tram

Another big problem is when the viewing a.xis of the cam
era is near along the observed street and the direction of the 
moving vehicles points to the viewpoint (see Figure 8). Fist 
we see one big patch in the distance that comes closer and 
splits up into several detached objects. This time it is very 
difficult to decide when to define more than one moving ob
ject and how to manage their lifetime after they split up. The 
reverse way, when the vehicles goes by from the viewpoint 
and their silhouettes melt together in the distance, is not so 
problematic, because they come into the screen as indepen
dent objects, so their lifetime can be followed easily.

Fortunately, there are opportunities to enhance the perfor
mance of the pattern- or motion tracking. As we mentioned 
above, the most time consuming part of this task is to find 
similarity of the tracked pattern. If we take the lifetime (refer 
to Section i. 1) of the object into attention and know' the po
sition and movement of it, we can predict its position on the 
following frame by extrapolation. Using this, we can smallen 
the size of the neighborhood to find similarity, because the 
probability that it will be somewhere at the extrapolated po
sition IS very high, seeing that the speed of a vehicle usually 
does not change suddenly.

Figure 8: The problem of common source: the tank-truck 
and the neighboring cars on the left have the same color 
(green)

4, Future tasks

In this Section we describe our plans about extra features for 
the algorithm, which are to make it more flexible, more adap
tive and much faster. Also an idea of a third output was born 
in the beginning of the project that is about to classify the 
passing vehicles (i.e. to order them into categories of cars, 
trucks, buses etc.).

4.1. Vehicle classification

In  ̂ a vehicle recognition and classification system is pre
sented. It works on skeletal recognition of objects and it 
needs a lot of constrains (such as the orientation of the car) 
that have to be realized for the correct classification. The 
suggested approach also has some limitations including the 
problem of occlusion. Our project targets working on real
time PAL video, which means the whole tracking and mea
suring task (including the classification task) should be done 
in 40 ms. Naturally, some of these tasks could be completed 
only after the lifetime of the moving object reaches its end, 
because all of the information, measured while the object 
was visible, is needed for evaluation.

The real-time and flexible being of our algorithm demands 
not to spend too much time on recognition of vehicles. Be
sides, we cannot guarantee that the vehicles on the road are 
the most ideal orientation, because of the various setups, lo
cations and orientations of cameras. So, at the moment our 
goal is just to classify the objects after their size, however, 
this is not the best way to decide whether a bus or a truck has 
passed in front of a camera. After deeper examination we try 
to teach the algorithm finding feature patterns on the texture 
of the objects to make more certain decisions on categories.

4.2. Problematic visibility cases

At the moment we have only test videos recorded in day
light. In many respects we are lucky, because of the rela
tively good lighting and visibility conditions on a good qual
ity video. Unfortunately it is not absolutely true; there are 
many problems with daylight records:

47



Szabolcs Czuczor /  Road Traffic Monitoring by Video Processing

shadows o f the vehicles on the asphalt -  shadow enlarge 
the silhouette of a moving object that can cause fusion of 
multiple objects during object detection (see Section 2.2), 
The problem caused by this phenomenon could be elim
inated if the hue information was also examined. .At the 
moment we work on grayscale images. If we used also 
true color images in HLS^ color space it would hugely 
decrease the performance of the algorithm. 
lens flare -  lens flare is caused by the multiple reflection 
and refraction of light between the lenses of the camera. 
This phenomenon can be seen as a relatively static arti
fact on the screen that changes with the change of sun
light. Hence, usually it causes very slow change in the 
foreground that can be interpreted as a slow change in 
the background. So, it can be easily eliminated by the 
foreground-background separation method mentioned in 
Section 2.1.
sunlight twinkle on the windscreen -  this phenomenon can 
be also originated in optical reasons, but it caused by the 
microscopic corrugation or rib on the surface of lens(es). 
The result is a bright line or curve on the screen (see Fig
ure 9), which appears suddenly when the sunlight is re
flected on the windscreen of a car or any other glossy 
surface (e.g. glazed coachwork). To eliminate this effect, 
we have to know the orientation of these twinkles. Then 
transforming the image into frequency domain we can fil
ter them, but it is risky, if some line of the scene, which is 
important for evaluation, has the same orientation.

Figure 9: The result of sunlight twinkle on the windscreen

Now let us see the problems that we meet in other weather 
conditions:

•  ntghttime scenes -  in the night we can meet the following 
problems:

0 not visible coachwork -  if the CCD'  ̂ of the camera is 
not sensitive enough, or its histogram balancing sys
tem does not work well, the whole coachwork will not

' HLS: Hue, Lightness, Saturation. This is an alternative color co
ordinate system derived from the RGB (Red, Green, Blue) system 

CCD: Charge-Coupled Device. CCDs convert light into propor- 
uonai analog electncal current. 2D (or area array) CCD chips are 
responsible for capturing images in a camera or camcorder.

48

be visible in the screen, but only the two headlights of 
the car.

o shadows and light beams on the road -  the problem of 
shadow (now caused by the street-lighting) has been 
mentioned above. But m nighttime we can see also 
beam on the asphalt cast by the headlights of the car. 
This problem can be also solved by processing tlie hue 
channel of the color image (see above).

ratny, snowy scene -  the relatively ordered noise on the 
image caused by falling rain could be filtered in frequency 
domain (refer to the sunlight twinkle problem mentioned 
above). But in case of snow, which falls slower and in 
random directions, this solution does not work well. 
blocky frames -  it is not decided at the moment by the 
project leaders, where the video processing unit will be 
deployed. Whether near to an analog camera, where the 
direct input is an analog video signal, or far from a dig
ital camera where the input is an encoded, MPEG-like’"' 
digital video stream. When we save too much data trans
mission bandwidth, the encoded video could be blocky. 
This blockiness caused by the transformation-based being 
of the video encoding algorithm, where the blocks are the 
elementary units of the encoded data. On the other hand, 
in case of enough bandwidth they are unperceivable (see 
Figure 10).
The blockiness is very harmful during motion tracking, 
because the edges of blocks influence the success of find
ing pattern similarities. There are algorithms that are to 
eliminate the blockiness of low bandwidth images, but 
usually their secondary effect is a little blur and they are 
also very time-consuming.

Figure 10: Blocky image caused by the too low data trans
mission bandwidth

4.3. Speeding up

The current implementation of our algorithm is written in 
C-H- environment without any use of low-level instructions.

MPEG: .Motion Picture Experts Group. Today’s digital videos 
are encoded into MPEG-1 (VideoCD), MPEG-2 (DVD, DVB), 
MPEG-4 (Camcorders, PC AVI codecs such as DivX, XviD) etc. 
format, which is a hybrid (transformation-based, differential) stan
dard video coding algorithm



Szabolcs Czuczor/Road Trajfic Monitoring by Video Processing

Using low-level SIMD^^ instructions we can increase the 
speed of our algorithm and optimize image-related func
tions. Our plan is that we implement as much part of our 
source code into SSE^  ̂instraction set assembly code as pos
sible. Besides, we want to examine the possibility of porting 
some tasks to the GPU of today’s modem graphics cards.

5. Actual results

At the time, when this article is being written, the algorithm 
is just able to clear the background, localize the moving ob
jects, sign them with individual IDs and paint their silhou
ette with different colors. There is still no lifetime manage
ment, no counting, no speed measurement and no classifi
cation. The implementation and the tests are performed on 
a 1492 MHz Athlon XP 1700t- processor PC with 512 MB 
system memory running Windows XP operating system. As 
it is mentioned in Section 2 our test media is an MJPEG 
coded AVI file with CIF resolution. During the tests we pro
cess 1000 frames of the video. Observing the accuracy of the 
algorithm we generate control images that show the differ
ent phases of the algorithm frame by frame. These images 
are saved as 8-bit TGA (Targa) format image files with the 
resolution of 352 x  288. When we generate and save these 
images, the average frame time is 49.961 ms, which equals 
to 20.015 EPS frame rate. When the control image genera
tion and saving is ignored (which is absolutely needless in 
the final version of the algorithm), the average frame time is 
40.418 ms, which equals to 24.741 EPS frame rate.

6. Conclusions, discussion

The results show that after the development and test phase 
-  when we work on direct video source and not from an 
AVI file, always reading it from the HDD, and when we im
plement the algorithm using SSE instruction set -  we will 
have enough time between frames to do the remaining tasks 
such as lifetime management, object counting, speed mea
surement and vehicle classification.

The advantage of the algorithm is that it can be deployed 
everywhere in the capital city where a usable viewpoint can. 
be found for a camera and a PC to observe the road traffic. 
The outputs of the application are just a few numbers in each 
minute, which means that this data can be easily collected, 
transmitted and broadcasted. On the other hand, one of its, 
disadvantages is that some parameters need to be preset such 
as the 3D helper grid mentioned in Section 3.2.

However, this application could be the first city-wide road

t t  SIMD: Single Instmction Multiple Data 
W SSE: Streaming SIMD Extension. It is an instruction set exten
sion developed by Intel and used in every Pentium III (and later) PC 
CPUs

traffic management application, which provides public infor
mation about the city traffic that is accessible eveiywhere by 
a single WAP enabled mobile phone or the internet.

7. Acknowledgements

This project is managed by the Department of Highway and 
Railway Engineering at the Budapest University of Technol
ogy and Economics, Budapest, Hungary.

References

1. P. Mirchandani, M. Hickman, A. Angel and D. Chand- 
nani, “Application of Aerial Video for Traffic Flow 
Monitoring and Management”, FIEOS 2002 Confer
ence Proceedings, 2002. 1

2. G. L. Foresti, V. Murino and C. Regazzoni, “Vehi
cle Recognition and Tracking from Road Image Se
quences”, IEEE Transactions on Vehicular Technology, 
vol. 48, No. 1, January 1999 1, 5

3. A. J. Lipton, “Local Application of Optic Flow to Anal
yse Rigid versus Non-Rigid Motion”, ICCV Workshop 
on Frame-Rate Vision, 1999 1

4. E. Rivlin, M. Rudzsky, R. Goldenberg, U. Bogomolov,
S. Lepchev, “A real-time system for classification of 
moving objects”, I6th International Conference on Pat
tern Recognition, 2002. Proceedings 1

5. Z. Zeng, S. Ma, “An Efficient Vision System for Mul
tiple Car Tracking”, I6th International Conference on 
Pattern Recognition, 2002. Proceedings 1

6. A. M. Elgammal and L. S. Davis, “Probabilistic frame
work for segmenting people under occlusion”, 8th 
IEEE International Conference on Computer Vision, 
Vancouver, 2001 1

7. H. Fujiyoshi, T. Kanade, “Layered Detection for Mul
tiple Overlapping Objects”, I6th International Confer
ence on Pattern Recognition, 2002. Proceedings 1, 5

8. Cs. Benedek, T. Szirányi, “A Markov Random 
Field Model for Foreground-Background Separation”, 
Joint Hungarian-Austrian Conference on Image Pro
cessing and Pattern Recognition (5** KÉPAF, 29** 
OAGM/AAPR), Veszprém, Hungary, 2005 2

9. Video Broadcast Standards -  NTSC -  PAL -
SECAM, http: / /WWW. alkenmrs. com/video/standards. html,
February 26. 2005

10. G. Vass, T. Perlaki, “Applying and removing lens dis
tortion in post production”. Second Hungarian Confer
ence on Computer Graphics and Geometry, 2003, Pro
ceedings, pp. 90-97, Budapest, Hungary 4

11. ISO/IEC 11172 (MPEG), International Standard, 1993 
6

49



Third Hung2irian Conference on Computer Graphics and Geometry, Budapest, 2005

Enhanced V ideo Capture Support in OpenCV
under Linux

Csaba, Kertész

University of Szeged, Faculty of Science

A b stra c t
The wide-ranging multimedia support is very important in a desktop operating system if  somebody 
would like to use the P C  for entertainment or research projects (e.g. image processing, robot 
vision applications etc.). I t  is unavoidable to acquire sound or image sequences with different 
multimedia devices. The In tel’s OpenCV (Open Source Computer Vtston Library) library can be 
used fo r  image processing and computer vision solutions. This library is available under different 
operating systems such as Linux and grown to a standard in  the image processing applications last 
years. The program is constantly under development thus the author of this paper also significantly 
improved a few video capture features of this library. These results are summarized in the followings.

Subjects: OpenCV, Video^Linux, Video4Linux2, video capture, webcam

1. In tro d u c tio n

Linux produced a noticeable advance last years, also in 
the area of driver programming. A lot of programmers 
recognized the possibility to make drivers for various 
multimedia devices and allowed of better work with 
Linux day by day. However the support for multime
dia hardware is still far behind that for other oper
ating systems, sometimes due to the lack of support 
and documentation by hardware manufacturers, some
times due to licensing problems. Another major reason 
for this was the lack of a  standardized programming 
interface.

A device driver is not usable for everybody if the 
author of driver writes it without collaborating with 
others using a common API. This purpose is served by 
V4L* and V4L2 specification^. Video for Linux is the 
first generation of standards for using video devices 
under Linux. The V4L API was firstly introduced in 
Linux 2.1 to unify and replace various TV and radio 
device related interfaces, developed independently by 
driver writers in prior years.

After a few years Video for Linux Two was a very 
good replacement for the V4L API that comes with 
the official newest Linux kernels. Starting with Linux

2.5 the much improved V4L2 API replaces the V4L 
API, although existing drivers continued to support 
V4L, either directly or through the V4L2 compatibil
ity layer^.

OpenCV maintained by Intel is an image processing 
library which is available under Windows and Linux 
too. The OpenCV implements a wide variety of tools 
for image interpretation. In spite of primitives such 
as filtering, image statistics, pyramids, OpenCV is 
mostly a high-level library implementing algorithms 
for calibration techniques, feature detection and track
ing etc.®

OpenCV has a special sublibrary which does not 
contain image processing methods but it equips with 
wide-ranging facilities for handling image data like 
loading/saving images, video capture/storage func
tions. One of these features is video capture which has 
different support under Windows (DirectShow) and 
Unix-like systems (Videodev module, FireWire).

More improvements were written in video cap
ture capabilities under Linux because there was only 
poor support in OpenCV regarding Eill prospects of 
V4L/V4L2 API. The following chapters describe the 
main features of V4L/V4L2, the old status of the video

50



Csaba, KerteszUniversity of Szeged, Faculty of Science /  Enhanced Video Capture Support in OpenCVunder Linux

capture support in OpenCV and the new improve
ments of the author in this part.

- Ability to change capture resolution 
during capture process.

2 . V 4 L /V 4 L 2  T ech n ica l B a ck g ro u n d

There are two difiFerent parts in the Linux kernel re
garding this multimedia programmable interface:

- API (Application Programming Interface),
- Videodev module.

The API of V4L is defined in videodev.h, 
Videodev module in videodev.c. The API of V4L2 in 
videodev2.h and module in videodev2.c respectively 
(files are parts of official kernels)'^. The API is respon
sible for defining specification and Videodev module 
for handling several video drivers (registration and 
administration)^.

The user reaches the interface through /d ev  logical 
directory under /dev/videoX  nodes (X means an in
teger veJue). If a  new device is plugged Linux will try 
to use an appropriate driver w ith Videodev module. 
The driver of device will register by Videodev module 
and V4L/V4L2 will create a special node (for exam
ple /dev/videoO) which is a connection point between 
the user and the kernel driver of device. Abstraction 
layers are demonstrated in Figure 2 after References 
section. Nevertheless Videodev module only takes care 
that the right driver is reached with ioctl calls.

V4L/V4L2 supports following features with their 
API:

- G et/set capture main capabilities,
- G et/set image properties,
- Switch capture memory buffer modes,
- Synchroniziition of capture,
- Set audio mode etc.

The present situation is that many drivers of cap
ture devices have got only Video for Linux support 
available. The V4L is the older specification and 
drivers are more stable in this mode thus V4L and 
V4L2 Eire living parallel and providing standard API 
layer for all video drivers.

3. O ld  V 4 L /V 4 L 2  su p p o r t in  O p en C V

OpenCV did not support V4L2 till this summer. It 
handled only Video for Linux with following features:

- Automatic video source detection
(it was ready for V4L2 also),
- Automatic palette detection,
- Memory éillocation with mmap mode,
- Synchronization of capture.

The biggest lack was no possibility to change image 
capture capabilities and Eidjust image properties (e.g. 
contrast, brightness) in OpenCV. This is very impor
tant in severed applications to improve image quality 
with changing hardware capture iontrol parameters 
which are useful many times instead of standard soft
ware algorithms because of e.g. decreasing CPU load 
or better image quality.

4 . T h e  d e v e lo p e d  n o v e l im a g e  p r o p e r tie s  for 
O p en C V

Firstly the image properties for V4L and V4L2 de
vices were changed and the API of OpenCV (in con
cert with OpenCV developers) was modified with a 
few new constants in order to handle new properties:

- Brightness,
- Contrast,
- Saturation (it has a different nEime
"Colour” in V4L),
- Hue,
- Gain (this feature in V4L is not
supported).

These five image properties cover all features of the 
capture devices. Naturally, support of the several ele
ments depends on implementing of the device drivers 
and the hardware design. If a  driver or device does not 
support a property it generates an error message and 
functions of OpenCV return with value -1.

Nevertheless, there are differences between handling 
image properties in V4L and V4L2. Properties have a 
constant range 0-65535 in V4L but it changes in dif
ferent driver implementations. Many times the limits 
of this range must be surveyed with manual modifi
cation of properties because o f the lack o f automatic 
detection of these values in V4L. On the other hand 
Video4Linux2 supports to get minimum and mEixi- 
mum lim its o f capture image properties that the new 
patches taking it into account.

The user scope is that the image features have float 
ranges 0-1 specified by the official API of OpenCV. 
The distinct value ranges in V4L/V4L2 solutions 
were handled and normalized in the new codes. But 
OpenCV detects range limits of properties only for 
V4L2 devices since the achievement would be very dif
ficult in V4L.

5. N e w  V 4L 2 su p p o r t in  O p en C V

Only another possibility was for the users if they did 
not have a V4L compatible device under Linux. Cam-

51



Csaba, KerteszUniversUy of Szeged, Faculty of Science /  Enhanced Video Capture Support in OpenCVunder Linux

era with FireWire connection could be used instead 
of a  V4L device but it was a partial solution because 
V4L2 provides also a very good multimedia support.

The first step o f V4L2 development was the buy
ing of a webcam (Genius VideoCam NB Security) 
which possesses a real stable V4L2 compatible de
vice driver. After originating of hardware basis of de
velopment, initialization process of capture devices 
in OpenCV was rewritten and latter separation of 
V4L/V4L2 codes was designed. If user initials a new 
device in OpenCV the process is following;

1. Detection as V4L compatible device
2. Detection as V4L2 compatible device

Note that the API of V4L2 is more advanced than 
the API of V4L however many times device drivers 
are more stable in V4L mode therefore OpenCV tries 
to use every capture device as V4L at first.

A new palette (codec) detection for V4L2 was writ
ten. It supports following codecs/colorspaces:

- RGB (24 bit, uncompressed),
- YVU 4:2:0,
- YUV 4:1:1,
- SBGGR8 codec,
- SNOClOx codec.

First three standard codecs were implemented ear
lier in OpenCV for V4L devices and they are used by 
many webcams and capture cards. Last two codecs 
are specific by Genius VideoCams and they were in
troduced by the author in OpenCV however origi
nal SBGGR8 codec is part of a SNOClOx webcam 
application® and SN9C10X codec was written by 
Taltafumi Mizuno®.

The developed patches use mmap memory alloca
tion function in image buffer. In that way the capture 
process will be faster as the user mapped function (lat
ter provides only one firame in each capture period af
ter clearing out image buffer). Another implemented 
feature is the synchronization of the capture process 
which is important to capture each frames after the  
others.

6. T est h a r d w a r e /d is tr ib u tio n s

The developed patches for OpenCV were tested on 
several hardware platforms and distributions w ith var
ious webcams (Genius NB Security, Creative Vista 
and some Logitech). That shows Figure 3 and Figure 
4 after References section. Basically, test hardwEires 
were 1386 architectures although new 64 bit systems 
were presented also in tests (both AMD and Intel).

52

It laid special emphasis on testing more versions of 
software environments:

- Different branches of Linux kernel (2.4.x 
and 2.6.x),
- Latest oflficial release and CVS version of 
OpenCV,
- Debian (Stable and Testing) and Suse 
distributions.

The development in testing status was not met 
with big difficulties, there were only a few problems 
with compiling OpenCV and CamView (the later dis
cussed sample application) caused by distinct ways of 
Linux distributions (e.g. library locations in filesys
tem ). That was not needed to  make a lot of changes 
in new patches because Linux systems have only differ
ent versions of V4L/V4L2 layer is provided by kernel 
and Videodev module which can be handled simply. 
Eventually all tests were successful without any prob
lems.

i . A ?  -A ’

' >  H*, '>-»v ^

■?f - '•

.in. nAlxW:

'• r r;'..

C o o f i q u r e D e v i c e : ; 0  I C ;  F r a r n s / s e c :  . l O i : ;  ,

C a p t u r e R e s o l u t i o n '  , 3 5 2 x 2 8 8  i

B r i g h t n e s s '  _ J *  f a  °
C o n t r a s t 1 ■ ^ ‘ ' ' '  ^
S a t u r a t i o n '  M  = 0
H u e

G a i n

i v  C a l i b r a t i o n  c h e c k C h é s s b o a r d ^ T í  ‘  x  * 5  i :

f r , ; ;

F ig u re  1: Screenshot from CamView program.



Csaba, Kertész University of Szeged, Faculty of Science /  Enhanced Video Capture Support in OpenCVunder Linux

7. S am p le  a p p lica tio n

A simple viewer application called CamView® was de
veloped in G TK /G NO M E graphical environment for 
webcams and other V4L and V4L2 compatible devices. 
It uses standard capture procedures of OpenCV and 
a few calibration functions in order to test easily ef
fects of changing capture control parameters (Figure 
1). The program can detect a  chessboard on an image 
by help of OpenCV and show internal corner points 
detected by subpixel accuracy.

The window of CamView application was divided 
into four parts. The first part is the captured image of 
V4L/V4L2 device, in the second there is the main con
trols of capture features (device index /dev/videoX , 
fps and resolution), the third shows the properties of 
the captured image (contrast, brightness, saturation, 
hue, gain) and the task of the last part is the settings 
and to recognize and show the calibration chessboard.

Usage of program is very simple. After application 
was run the user can change the calibration control 
and the options of image properties and commit with 
Configure button. If an image property is not sup
ported by capture device or driver the horizontal slider 
belongs to it will jump back to value zero. Program 
halts and prints error messages by strong situation 
(e.g. unsupported capture resolution).

The user can test the capture device in a few min
utes with CamView and experience which capture cti- 
pabilities are adjustable on it.

8. S u m m ary

The paper have described the new API changes of 
OpenCV and the patch design with collaboration of 
two maintainers of Intel’s library (Olivier Bornet and 
Vadim Pisarevsky). Four more important additions 
of OpenCV codes were created and tested on more 
types of computers and Linux distributions with sev
eral webcams. Test results were good and big differ
ences can not be found between different computer 
platforms. This is a  main advantage of the common 
standards and APIs in Open Source Community un
der Linux. New modifications are available on CVS 
page of OpenCV^.

Current status of the V4L/V4L2 support patched 
by the author with maintainers of OpenCV was dis
cussed and conclusion is the following: the new addi
tions are stable and will take care of only future mod
ifications of V4L/V4L2 kernel components or other 
sttmdards.

This project confirmed V4L/V4L2 solutions have 
a very pleasant, good purposeful API for wide-range

of the multimedia applications which can be im
plemented quickly and efficient. Eventually an open 
source project with good planned API and program 
architecture (e.g. OpenCV) is very useful and it can 
be improved by a programmer swimmingly.

R e feren ces

1. Video4Linux resources: specifications, drivers for 
many devices etc.
URL: http://uium.exploits.org/v4l/

2. Video4Linux2 main homepage: Specifications, 
drivers, programs etc.
URL: http://linux.bytesex.org/v4l2/
URL: http://linuxtv.org/v4Iwiki/index.php

3. Metzler, Ralph: Video4Linux. 6th International 
Linux Kongress, September 8th to 10th, 1999, 
Augsburg, Germany.

4. OpenCV library homepages: General 
informations on Intel’s pages and newest 
releases, CVS version of code on Sourceforge.net 
project page.
URL:
http://um w . intel. com/technology/computing/opencv/ 
URL:
http://sourcefoTge.net/projects/opencvlibrary/

5. Open Source Computer Vision Library.
Reference Manual. Intel Corporation, 1999-2001. 
URL: http://developer.intel.com

6. CamView program. Part o f Cognitive Vision 
project.
URL: http://umw.sourceforge.net/projects/aibo/

7. Official kernel distributions of Linux systems.
URL: http://umw.kemel.org

8. SN9C10x official driver and webcam application. 
URL:
http://www.linux-projects.org/modules/news/

53

http://uium.exploits.org/v4l/
http://linux.bytesex.org/v4l2/
http://linuxtv.org/v4Iwiki/index.php
http://umw
http://sourcefoTge.net/projects/opencvlibrary/
http://developer.intel.com
http://umw.sourceforge.net/projects/aibo/
http://umw.kemel.org
http://www.linux-projects.org/modules/news/


User Hardware
Applications

Csaba, KerteszUniversity of Szeged, Faculty of Science /  Enhanced Video Capture Support in OpenCVunder Linux

xawtv

xtvscreen
Iomega Buz

TerraTV+

WinTV/Radio

F ig u re  2: Abstraction layers to handle video devices in Linux.

F ig u re  3: Features o f tested platforms.

F ig u re  4: Tested webcams.

54



Harmadik Magyar Számitógépes Grafika
és Geometria Konferencia

2005 Budapest

Virtual Patient for Anatomical Ultrasound Guidance

Barnabás Takács
Digital Elite/WaveBand, Los Angeles 

BTakacsfSidigitalElite.net

Gábor Szíjártó, Balázs Benedek 
VerAnim, Budapest

sziiarto.gaborfSfreemail.hu . benedekfSdigitaldteam.hu

Abstract

This paper presents a novel application o f  computer animated digital human technology applied to portable 
healthcare. It describes an advanced solution for patient-specific ultrasound guidance system which permits 
medics with minimal training to take highly accurate ultrasound scans in remote locations and transmit that 
information to doctors situated in another location. We implemented a demonstration system using a 
portable “back-pack” ultrasound device connected to our telemedicine program interface. It allows rapid 
diagnosis in the critical first hours after injury, without actually transporting the woimded person to a 
medical facility. Doctors are able to participate in diagnosis and treatment decisions through full access to 
the ultrasound scan from a remote hospital or field station via a digital network and use their own 
computer, PDA or even cell phone to view  the images.

1. Introduction

This paper presents a novel application o f digital human technology developed for the portable 
healthcare market. The system, called “3D Anatomically Guided Ultrasound System (3D-AGUS)’’ 
builds upon our Virtual Human Interface [1-3] technology to provide an advanced solution for 
patient-specific guidance. Through a simple to use interface it permits medics with minimal 
training to take highly accurate ultrasound scans in remote locations and to transmit that 
information to doctors via a digital network telemedicine interface. The demonstration system we 
developed employs a portable “back-pack” ultrasound device, which allows rapid diagnosis in the 
critical first hours after injury, without actually transporting the wounded person to a medical 
facility. Doctors are able to participate in diagnosis and treatment decisions through full access to 
the ultrasound scan from a remote hospital or field station via a digital network and use their own 
computer, PDA or even cell phone to view the images.

The 3D-AGUS is an advanced real-time visual interface that provides expert assistance to 
medical personnel in performing diagnostic and therapeutic ultrasound on the site of an accident 
or in remote urban locations. The solution we developed is a rugged, portable and easily 
deployable “back pack” system that can be used to examine and treat the injured or sick in far- 
forward conditions. Using the built in guidance functions and telemedicine module, lower-skilled 
medics are capable of acquiring and transmitting ultrasound (US) scans to higher-skilled 
clinicians working at a remote telemedicine facility.

The prototype 3D-AGUS combines the benefits of a generic virtual human anatomy 
model with visualizing 3D volumetric data sets (MRI & CT) of the patient that may be available 
from a central database. These volumetric data sets and a high fidelity generic 3D model of the 
human body together provide active computer assistance to the medic performing the 
examination by visually displaying the ways that the image plane of the ultrasound probe moves 
toward the specified anatomic location as she or he manipulates the ultrasound probe over the 
injured person’s body. Our innovative approach employs measures the 3D motion of the probe 
and register its location to the precise features of the patient’s body. The real-time visualization 
system was integrated with a SonoSite CI80 Plus portable ultrasoimd (US) device [4]. Images 
obtained by the US probe are displayed in real time on an image plane precisely registered to the 
patient’s body and internal organs. The 6DOF motion (x,y,z translation and yaw, pitch, and 
rotation) is tracked by an external device easily attached to the US probe itself.

55



Harmadik Magyar Számítógépes Grafika
és Geometria Konferencia

2005 Budapest

2. Background

Ultrasound revolutionized the practice of diagnosis, patient care and internal surgery. In the field 
it provides a quick and reliable assessment of medical conditions that can be readily compared 
with pre-existing data sets. Ultrasound has also been in the forefront as a tool to expand the range 
of interventional procedures. As a result, during the past years many open operations have been 
replaced with less morbid, minimally invasive procedures. Today, surgical patients can often 
return home the same day and return to work in days, as compared to weeks with conventional 
surgery. The major obstacle facing medics as well as doctors learning to use ultrasound is 
understanding how the ultrasound images are oriented relative to the patient [5-8]. The basis of 
this problem is that the orientation techniques used to establish image context in the classical 
methods, such as cross section slicing, create a major difficulty for interpreting the data set. The 
techniques used by ultrasonographers to understand imagery rely heavily on knowing about the 
orientation of the patient and how/where the US probe is moving at any given moment time in 
relation to the body itself. The problems of interpreting the US data and performing diagnosis are 
particularly difficult when the person taking the scan is in a different location from the one who 
performs the diagnosis. This is frequently the case when medics on the field or in rapidly 
deployed ambulance cars need to care for injured patients. Furthermore, many of these medics do 
not have the skill and anatomical knowledge to ensure that the US scans obtained provide the 
most valuable information for remote diagnosis.

The solution to this problem is offered by a novel anatomical guidance and navigation 
system that displays the position and orientation of the ultrasound plane and images to the medic 
performing the scan in real time. The technique employed herein displays the required orientation 
information with the help of a generic 3D model of the human body as well as patient-specific 
volumetric data scans processed with the help of Sheer [9] as the main visual references. This 
technique is helpful because it provides both operators and doctors with important spatial cues. 
This has been shown to improve their ability to interpret the ultrasound. In addition, by using 
telemedicine and augmented reality teehnology, it also overcomes the problem of the physician 
having only limited information about the location of the probe with respect to the patient lying 
on the ground, and thus helps the mental representation of tiie ultrasound beam location inside the 
patient’s body.

3. System Overview

The overall diagram of the prototype 3D-AGUS system is shown in Figure 1. The system receives 
input from a commercially available ultrasound device that can be a hand held/portable or fixed 
platform installation. The motion of the ultrasound probe is tracked in 3D (position and 
orientation) using advanced computer low-cost tracking sensors. The measured 6 degrees of 
freedom (DOF - x,y,z position and yaw, pitch, and rotation) information is used to control the 
motion of the image plane slicing through the patient’s body. The second component of the 
system is a generic highly detailed 3D human body model, which - depending on the level of 
detail required - includes internal organs, veins and limbic system, bones, and musculature. This 
generic 3D model is registered to the patient’s body using a quick interactive selection of key 
feature points and statistically available anthropometric data sets. Furthermore, when available, 
patient specifie volumetric data (MRI or CT) is readily included in the form of volumetric 
rendering yielding a final 3D patient model displayed by the 3D visualization engine. Finally, the 
detailed model and the tracked probe with the ultrasoimd image itself are displayed in an 
interactive 3D diagnostic imaging and therapeutic visualization environment which acts as an 
advanced human-machine interface, helping the medic see how the image plane moves toward 
the specified anatomic location as she or he manipulates the ultrasound probe over the patient’s 
body.

56



Harmadik Magyar Számitógépes Grafika
és Geometria Konferencia

2005 Budapest

T«toiaedkii*

Virtual Wuman ^

Figure I. Functional diagram o f  the 3D Anatomically Guided Ultrasound System (3D-AGUS).

Figure 2 shows the portable 3D-AGUS we developed to demonstrate the usability and 
applicability of our solution. In our experiments we used a SonoSite C180 Plus portable “back 
pack” field deployable device (bottom) with a small probe shown on the right. The US video 
image captured buy the US equipment is digitized and transmitted to a laptop computer or small 
footprint desktop computer at 30 frames per second (fps) via a USB 2.0 digital interface. The 
sequence of US images transmitted is directly mapped onto a visualization image plane in real 
time. To track the motion of the US probe multiple technical solutions were evaluated. The 
figure shows one of these external sensors comprised of a transmitter (placed on top of the 
computer) and a receiver, which is directly attached to the probe itself (right). The 6DOF motion 
of the US probe thus measured is subsequently mapped onto the respective geometric 
transformation axes controlling the position and orientation of the US image plane within the 
software. The following sections summarize the most important modules and aspects of the 3D- 
AGUS solution.

Using the tracking system

Visualization computer 
with 6DOFreceiver

Ultrasound Probe with octornal 
6DOF tracker trananitter attached

Video

Sonosiie Portable L'hrasound

Figure 2. Portable ultrasound guidance demonstration system.

57



Harmadik Magyar Számítógépes Grafika
és Geometria Konferencia

2005 Budapest

4. Basic Program Modules
4.1. Portable Ultrasound Interface

The prototype 3D-AGUS system uses a portable US device manufactured by SonoSite Inc [4]. To 
interface the visual data stream output by the SonoSite 180 Plus device as a video signal, we 
developed a video interface using dynamic texture technology. Dynamic textures are high 
resolution images mapped onto the surface of any 3D object in a virtual environment at high 
speeds to create the effect of a live video feed. The technology was originally developed for 
projects in TV and film production and has been optimized to process the signal received from 
the portable US device. The 3D-AGUS system accepts video signals from the ultrasound device 
via a standard RCA connector. The image is digitized and captured at 30 frames per second (fjps) 
and subsequently mapped onto any object, in most cases a simple image plane, as a dynamic 
texture for display and further processing. The dynamic texture architecture is a unique feature of 
the anatomically guided ultrasound system. It allows the ultrasound image to be mapped onto any 
virtual object and at the same time to be processed in real time. We have implemented a variety 
of real-time image processing functions that can be used either to process and register the image 
to other objects, such as MRI data, or simply to enhance the US output for visualization purposes.

4.2. Spatial Calibration

The purpose of the calibration algorithm we developed is to tie the real-world coordinates in 
which the operator moves and rotates the ultrasound probe with the relative motion of the US 
image plane in the virtual guidance space. This image plane is then used to slice the virtual body 
to help the medic scan the patient in the locations required by the injury or guided remotely by the 
doctors. To map the real-world motion of the tracker attached to the ultrasound probe to the 
virtual patient we use an anatomically correct 3D skeletal model. Specifically, during calibration 
we ask the operator to interactively click on points on the patient’s body when prompted. The 
prompt method we developed uses the anatomical bones of our virtual patient and indicates on 
the screen where the operator is requested to place the probe. As an example, the interface would 
prompt him or her to click on the left knee, the neck or the top of the head. Once all calibration 
points are collected, an automatic algorithm computes the appropriate affine transformation 
parameters that will be used for the process of obtaining the best possible US scan. This process 
in the simplest case uses two calibration points, one at the feet and one at the top of the head. The 
calibration algorithm prompts/asks the operator by showing a green marker on the body part and 
asking him to move the US probe to that location. A series of calibration points are quickly input 
this way to compute the global transformation parameters. The algorithm can use as many 
calibration points as necessary, thus allowing it to create a complete mapping of the real-world 
onto the digital patient model. Since the model refers to bone names, muscle groups etc. (using 
their Latin or English equivalent) it is very easy for the doctors situated at the remote 
telemedicine station to specify the area of interest for the operator.

4.3. Anatomically Correct 3D Virtual Human Model

The 3D-AGUS prototype system contains both a generic human body model as well as person- 
specific 3D medical data. The former is represented as 3D model geometry and the latter with 
volumetric objects that directly display patient data obtained by MRI, CT scanners. We currently 
have implemented a detailed model that includes the skeletal system and the muscle systems. 
Models of internal organs as well as the limbic and vestibular systems are to be added later, as 
required. Figure 3 shows an example of the skeletal and muscle structures as well as the facial 
geometry of a female patient. Finally, the 3D model geometry can be combined by loading

58



Harmadik Magyar Számítógépes Grafika
és Geometria Konferencia

2005 Budapest

I
I

multiple independent volumetric data sets obtained from MRI or CT scans. The volumetric data 
sets are linked to the bone system and move along as the virtual patient is animated. Figure 4 
shows a pseudo-colored head MRI data set attached to the neck. The slices represent the axial, 
coronal, and sagittal image planes, respectively, and they can be moved to readily obtain any 
cross section in the data set. The complete virtual patient model is fully animatable thereby 
creating the foundation for accurately matching the posture, position, size, and even body type of 
the patient.

Figure 3. Example o f  anatomically correct detailed skeleton, muscles andfacial geometry 
animated to match a specific body pose.

4.4. Volume Visualization and Slicing (MRI and CT)

Besides using generic human models and 3D geometry, one of the key advantages of the 
prototype ultrasound guidance system we developed is that it can display and process patient 
specific medical 3D data sets directly. Specifically, we implemented a volumetric visualization 
node that readily accept these kinds of data sets, such as MRI and CT slices, and displays them in 
an integrated fashion with other elements of the virtual anatomical guidance systems. The 
volume node uses 3D textures {u,v,w) as a basic data storage and takes advantage of the latest 
advances in hardware-supported rendering methodologies. However, our solution does not 
require the use of expensive computational platforms but rather a portable personal computer or 
laptop. The volume node supports multiple ways of displaying volumetric information. As an 
example, for flexible visualization properties, the image plane representing the ultrasound image 
can be used to glide through and penetrate this volume or to slice it directly. This is demonstrated 
in Figure 5. In the upper row the ultrasound image plane is shown inside the data set as it passes 
through the volume, while the lower row shows examples of using the image plane of the US 
scan to “slice” the volume and display the corresponding cross section.

Unlike other solutions, the volumetric visualization node is implemented as any other object 
within the 3D scene; thus it can be attached to the virtual humans’s bone structure or linked to 
other geometries in the scene (see also Figure 4 above).

59



Harmadik Magyar Számitógépes Grafika
és Geometria Konferencia

2005 Budapest

<̂1 V I

Figure 4. Combining volumetric information 
(pseudo colored) obtained from  an M RI data set with 

3D model geometry.

5. Advanced Interfaces

Figure 5. Visualizing volumetric M RI data set 
using different slicing methods.

5.1. Disc Controllers

The segmentation of large volumetric data sets of a person is a computationally intensive and 
time consuming task that needs to be done prior to a planned intervention. To provide anatomical 
guidance and US scanning capabilities on the field, the operator may not have the 3D models or 
the critical time required to generate these models readily available. To overcome this problem, 
we developed and demonstrated a novel technique, called dynamic shading technology (DST). 
Dynamic shading provides in-volume visualization and US guidance for specific body parts 
without(l) the explicit need for segmenting the volume model. DST uses the same segmentation 
parameters based on gray scale values of different tissues selected manually or estimated 
automatically. However, DST works by computing these calculations in render time, directly on 
the graphics card hardware itself, thereby fireeing up the CPU from performing the computations. 
As a result, DTS is a powerful method to quickly visualize inner organs and regions of the body 
to help guide the US acquisition process.

This technology was further enhanced by adding a novel interface, which allows medics to 
quickly access a wide range of internal body models while interactively changing the 
segmentation and imaging parameters. Specifically, to implement this interface we devised a 
unique and intuitive user interface called the Disc Controller (DC): The Disc Controller interface 
is a simple and intuitive device that will allow US operators to readily access different 
segmentation and algorithm parameters with ease. Figure 6 demonstrates the use of the DC for 
segmenting and visualizing the internal structure of a human head. The disc represents a 
continuous space of segmentation parameters. The red dots on the periphery and their associated 
labels refer to user defined names, such as “brain”, “skull”, “arteries”, etc. The center o f the disc 
is called the “neutral” position and it refers to the normal operation of the 3D anatomical display. 
The DC algorithm works by allowing the user to quickly access and navigate between these 
respective labels (and data sets referring to different internal organs) by using a mouse or simply 
touching the screen. The cross-shaped pointer displays the current settings/position in this image 
space. Since the specific labels on the periphery refer to unique combinations of segmentation 
parameters derived automatically or dialed in manually, these settings directly control the 
operation of the real-time dynamic shader pipeline by simply moving the pointer over any

60



Harmadik Magyar Számitógépes Grafika
és Geometria Konferencia

2005 Budapest

location of the disc. Vertex- and pixel shaders are tiny program fragments miming directly on 
the graphics card and determining the color and position of each pixel within the final rendered 
output. The algorithms implemented in vertex- and pixel shaders are controlled by textures and 
constants passed from the CPU when the operation is set up, typically once in every application. 
The dynamic pixel shader technology uses this basic framework, but instead of uploading the 
texture maps and associated constants only once, it does so 30 times per second, effectively 
providing very powerful means to constantly change and modify how the image appears and, 
consequently, how objects are displayed.

Figure 6. Disc Controller Interface to allow ultra sound operators to access 
different segmentation parameters in a simple and intuitive manner.

5.2. Touch Screen-based Interaction

Portable anatomical guidance systems like the one we developed are to be used by minimally 
trained operators in field conditions. Therefore, to ensure that they are capable of obtaining the 
best possible ultrasound images to be used by doctors in a remote location, it is critical to provide 
advanced user interfaces that simplify the scanning process and thus minimize the possibility of 
error.

Gesture-based input offers a simple touch and point interface that can be conveniently accessed 
any time by the operator. For the demonstration system we developed such a solution that allows 
the US operator to access areas of interest and navigate or explore the 3D virtual human model 
via a touch-screen device. Figure 7 demonstrates this interface. The 3D-AGUS system was 
augmented with an external touch screen device that can be readily placed in front of the 
computer monitor (left). Once installed, the 3D-AGUS system is capable of directly accessing the 
2D location of the screen wherever the user might touch it (center). This information is 
subsequently mapped onto keyboard and mouse events, allowing the operator to select body parts 
of interest (click on), rotate the 3D model by dragging a finger, and/or access parameters. This 
interface is intuitive and very easy to use. It requires no special skill or training and can be readily 
configured to provide access to a broad range of information. As an example one may take an 
ultrasound scan using a US probe in the right hand while rotating the model on the screen via the 
touch-based interface with the left hand.

61



Harmadik Magyar Számítógépes Grafika
és Geometria Konferencia

2005 Budapest

Figure 7. External touch screen interface to access 3D virtual human model during ultrasound scanning. 

6. Conclusion

In this paper we described a novel ultrasound guidance system that employs high fidelity digital 
human models to provide medics with minimal training to take highly accurate ultrasound scans 
in remote locations. The system was designed then to transmit that information to doctors via a 
digital network with the help of a telemedicine interface. The demonstration system enables 
doctors to participate in diagnosis and treatment decisions through lull access to the ultrasound 
scan from a remote hospital or field station via a digital network and use their own computer, 
PDA or even cell phone to view the images. The advanced capabilities of the 3D-AGUS solution 
therefore allow for better patient care faster and higher quality medical response and as such it 
may become the foundation and the backbone architecture for a new kind of nationwide e-health 
solution.

Acknowledgement

This research has been partially funded by a contract from U.S. Army TATRC (ref: Ron 
Marchessault). The authors wish to thank to Dr. Steve Pieper and Dr. Kirby Vosburgh from 
Harvard University SPL for their valuable discussions and support.

7. References

[ 1]
[2]

[3]

[4]
[5]

[6]

[V]

[ 8]

[9]

Digital Elite Inc. (2005), www.digitaIElite.net.
B. Takács, B. Kiss (2003), “Virtual Human Interface: a Photo-realistic Digital Human”, 
IEEE Computer Graphics and Applications, 23(5): pp. 38-45.
B. Takács (2005), “Special Education and Rehabilitation: Teaching and Healing with 
Interactive Graphics”, IEEE Computer Graphics and Applications, 25(5): pp. 40-48. 
Sonosite Inc. (2005), www.sonosite.com.
Birkett, D.H. (1998), “Advanced Display Devices, in Cybersurgery: Advanced 
Technologies for Surgical Practice,” R.M. Satava, Editor., Wiley-Liss, New York.
Sato, Y., M. Miyamoto, N. Nakamoto, Y. Nakajima, M. Shimada, M. Hashizume, S. 
Tamura (2001), “3D Ultrasound Image Acquisition Using Magneto-optic Hybrid Sensor 
for Laparoscopic Surgery,” in Lecture Notes in Computer Science, 2208, p. 1151-1153. 
Kane, R. (1999), “Intraoperative, Laparoscopic, and Endoluminal Ultrasound,” 
Philadelphia: Churchill Livingstone, pp. 224.
Boctor, E.M, A. Viswanathan, S. Pieper, M.A. Choti, R.H. Taylor, Ron Kikinis, and G. 
Fichtinger (2004), “CISUS: An Integrated 3D Ultrasound System for IGT Using a Modular 
Tracking API”, SPIE Proceedings, 5367, pp. 27.
Sheer (2005), www.slicer.org

62

http://www.digitaIElite.net
http://www.sonosite.com
http://www.slicer.org


Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Reconstruction of Optimally Sampled Volume Data

Balázs Csébfalvi^

Department of Control Engineering and Information Technology, 
Budapest University of Technology and Economics

Abstract
Spatial signals are usually sampled on 3D rectilinear grids because o f obvious practical advantages. Nevertheless, 
it is well known that a rectilinear grid is not optimal, even if  the cells are congruent cubes resulting in a Cartesian 
Cubic (CC) grid. It has already been shown that an optimal Body-Centered Cubic (BCC) grid requires about 
30% fewer samples to represent the same spatial information than an equivalent CC grid does. However, the 
reconstruction o f an optirruilly sampled signal is problematic because o f the non-separability o f the BCC grid. In 
this paper different reconstruction techniques are reviewed which have been proposed to visualize BCC-sampled 
volumetric data, including our recently published Prefiltered Gaussian Reconstruction (PGR) technique.

Categories and Subject Descriptors (according to ACM CCS); 1.4.5 [Image Processing]: Reconstruction-Transform 
Methods; 1.4.10 [Image Processing]; VolumeUic Image Representation; 1.3.7 [Computer Graphics]: Three- 
dimensional Graphics and Realism.

1. Introduction

Volume data can be obtained from different sources. For ex
ample, it can contain the measured values of a physical prop
erty, like the X-ray attenuation coefficient (Hounsfield den
sity) in a CT scan, or the result of a simulation, like Com
putational Fluid Dynamics (CFD). In order to smooth, warp, 
or morph surfaces, their geometrical representation can also 
be transformed into a volumetric model. Such a volume data 
contains samples of an implicit function (like a signed dis
tance map) which defines the surface as a level set.

Generally volume data is supposed to be a discrete repre
sentation of an underlying continuous phenomenon. The ac
curacy of this discrete representation is strongly influenced 
by that where and how frequently the samples are taken from 
the original function (or signal). From a signal-processing 
point of view, the original continuous signal can be perfectly 
reconstructed from the samples if it is band-limited and the 
sampling frequency is above the Nyquist limit

Samples are usually defined on a rectilinear grid, which 
has several practical advantages. For instance, samples are 
stored in 3D arrays, therefore they can be easily addressed.

t  e-mail: cseb@iit.bme.hu http://www.iit.bme.hurcseb/

Furthermore, for many volume-processing or rendering al
gorithms, it is important to rapidly access the neighboring 
voxels of a certain voxel. Convolution-based filtering or in
terpolation, for example, can be efficiently implemented on 
a rectilinear grid.

Nevertheless, it is well known that a rectilinear grid is not 
optimal, even if the cells are congruent cubes resulting in a 
Cartesian Cubic (CC) grid If a band-limited signal is sam
pled on an optimal grid, the number of samples necessary 
for a perfect signal reconstruction is minimal. The optimal 
regular sampling of spatial signals is closely related to the 
classical sphere-packing problem which is also referred 
to as Kepler’s problem in the literature. According to the Ke
pler coigecture, spheres can be optimally packed in 3D if the 
centers of the spheres are located on a Face-Centered Cubic 
(FCC) grid (see Figure 1). This almost 400-year-old conjec
ture was proven just in 1998 by Hales

An optimal 3D sampling grid is derived from an optimal 
sphere-packing grid in the following way. Assume that the 
original signal has a spherical spectrum (there are no pre
ferred directions). The spectrum of the sampled signal con
tains the replicas of the primary spectrum, centered at the 
points of the dual (or reciprocal) of the sampling grid '3. 
The original signal can be reconstructed if there is no over
lapping between the replicas. On the other hand, the spars-

63

mailto:cseb@iit.bme.hu
http://www.iit.bme.hurcseb/


frequency domain spatial domain

Csébfalvi /  Reconstruction o f Optimally Sampled Volume Data

FCC grid BCC grid

Figure 1: Duality between the FCC and BCC grids.

CC grid

Figure 2: Equivalent CC and BCC grids.

est sampling in the spatial domain corresponds to the tight
est arrangement of spheres in the frequency domain. The 
FCC grid is an optimal sphere-packing grid, therefore its 
dual, which is the Body-Centered Cubic (BCC) grid (see 
Figure 1), defines an optimal sampling pattern

2. Reconstruction of CC-sampled signals

Many volume-processing and volume-rendering methods re
quire the reconstruction of the underlying continuous func
tion from the discrete samples stored in the volume data. The 
fidelity of the continuous reconstruction strongly depends on 
the quality of the applied resampling filter. Therefore sev
eral researchers analyzed different reconstruction and deriv
ative filters, both in terms of accuracy and computational 
cost 9,K, 10,11 Generally, the wider the support of the filter 
in the spatial domain, the better its quality. For reconstruct
ing band-limited CC-sampled volumetric data, the best re
construction filter is the 3D sine kernel, since it represents 
an ideal low-pass filter. In practice, however, it is difficult 
to convolve a signal with the sine kernel, because of its in
finite support. Therefore practical filters either approximate 
it or truncate it by an appropriate windowing function 
On the other hand, convolution of a CC-sampled signal with 
separable kernels, like the trihnear or tricubic filters, can be 
easily and efficiently implemented.

3. Reconstruction of BCC-sampled signals

Although the BCC grid requires about 30% fewer samples 
to represent the same amount of spatial information than an 
equivalent CC grid does (see Figure 2), it is not widely used 
in practice. This is mainly because of the lack of efficient 
adaptation of high-quality volume reconstruction methods 
developed for the rectilinear volume representation.

Especially interpolating filters are difficult to design for 
the BCC grid, since a ID interpolating kernel cannot be ex
tended to 3D by a separable (or tensor product) extension. 
The reason is that the BCC grid is not separable itself. A 3D 
interpolation kernel has to take a value of one at the origin

and a value of zero at all the other discrete sample points. 
This criterion, however, does not make it easy to explicitly 
define the 3D interpolation kernel by a simple closed form, 
which could be efficiently evaluated.

Even the derivation of the ideal low-pass filter for the 
BCC grid is more complicated than for the CC grid. For 
the CC grid the ideal 3D kernel is simply the separable ex
tension of the ID sine function. For the non-separable BCC 
grid, the ideal low-pass filter is derived in the following way 
*. The Voronoi cell of the dual FCC grid is a rhombic do
decahedron. The corresponding characteristic function takes 
a value of one inside the cell, and a value of zero outside 
the cell. The ideal low-pass kernel is defined as the inverse 
Fourier transform of this characteristic function.

From a practical point of view, it is also important how the 
BCC-sampled data should be stored to support convolution- 
based filtering. Anyway, due to the more complicated index
ing scheme, the neighboring voxels cannot be as efficiently 
accessed as in the case of a CC, or a rectilinear grid.

Figure 3: The eontinuous Marsehner-Lobb test signal.

In the following sections different reconstruction methods 
are reviewed which have been proposed up to now in order 
to visualize BCC-sampled volume data. We compared these

64



Csébfalvi /Reconstruction o f Optimally Sampled Volume Data

techniques by rendering the Marschner-Lobb test signal * 
(see Figure 3) using a high-quality ray caster with the same 
rendering parameters. In order to demonstrate the gradient- 
estimation capability of the previous methods, for the shad
ing computation, we estimated the gradients by calculating 
central differences on the reconstructed signal.

3.1. Spherically symmetric filters

TheuBl et al. used spherical extension of ID reconstruction 
filters to render BCC-sampled data by the splatting method 

This approach, however, resulted in blurry images. Al
though the spherical extension seems to be a natural choice 
to define a filter for the BCC grid, it does not fulfill the in
terpolation constraint, even if the extended ID filter is inter
polating.

Figure 4: Gaussian reconstruction from 32 x 32 x 32 x 2 
BCC samples.

Figure 4 shows the test signal reconstructed by a spher
ically symmetric 3D Gaussian kernel. As it is an approxi
mating filter, the high-frequency details are blurred and the 
isosurface is significantly displaced.

3.2. Sheared trilinear interpolation

TheuBl et al. implemented also ray casting for the BCC grid 
using various interpolation techniques Among these tech
niques the best results were produced by sheared trilinear 
interpolation. According to this approach, trilinear interpo
lation is implemented in the sheared space, exploiting that 
the BCC grid can be treated as a sheared rectilinear grid (see 
Figure 5). This method, however, is direction-dependent, 
therefore it causes view-dependent artifacts. Furthermore, 
central differences on the reconstructed signal produce poor- 
quality gradients (see Figure 6). Therefore, a more sophisti
cated gradient-estimation method has to be applied to pre
compute gradients at the grid points. Gradient samples at 
arbitrary sample positions can then be interpolated from the

precomputed gradients by also using a sheared trilinear in
terpolation. Precomputed gradients, however, require addi
tional storage.

32 X  32 X  32 X 2 64 x  64 x  64 x  2

Figure 6: Reconstruction by sheared trilinear interpolation.

3.3. Linear box-spline reconstruction

Entezari et al. derived a linear box-spline filter for the BCC 
grid. This approach is based on a clever extension of the ID 
linear (or tent) filter to higher dimensions. The ID linear ker
nel can be obtained by projecting a 2D box along its diagonal 
axis onto the ID space (see Figure 7). Similarly, projecting a 
3D box onto the 2D space, a linear kernel is obtained for the 
hexagonal grid, which is an optimal 2D sampling grid For 
the optimal BCC grid, a linear kernel is derived by project
ing a 4D hypercube (tesseract) along its antipodal axis down 
to the 3D space. The obtained 3D filter is non-zero inside 
a rhombic dodecahedron, which can be interpreted as a 3D 
shadow of a tesseract.

Using the linear box-spline filter, a BCC-sampled vol
ume data can be more efficiently rendered by a software- 
implemented ray caster than an equivalent CC-sampled data 
using the popular trilinear filter. On the other hand, CC- 
sampled data can be interactively rendered by the conven
tional graphics hardware, which supports trilinear interpola
tion. Hardware-accelerated rendering of BCC-sampled data 
based on the linear box-spline filter, however, has not been 
implemented yet.

65



necessarily equal to the original samples fi

f ix )  ^  fix )

Csébfalvi /  Reconstruction o f Optimally Sampled Volume Data

Figure 7: (a): ID linear box spline, (b): 2D hexagonal linear 
box spline.

3.4. Cubic box-spline reconstruction ,

Entezari et al. * also derived a cubic box-spline filter for the 
BCC grid. In ID the cubic box spline is obtained by con
volving the linear box spline with itself. Similarly, a cubic 
box spline for the BCC grid is defined by convolving the lin
ear box-spline kernel reviewed in Section 3.3 with itself. By 
further successive convolutions a family of odd-order box 
splines can be derived for the BCC grid.

Unlike the linear box spline, the cubic box spline is an 
approximating filter, since it does not fulfill the interpolation 
constraint. Therefore, the cubic box spline cannot exactly 
reconstruct the values of the original signal at the discrete 
sample points.

Furthermore, the cubic box-spline reconstruction, as it 
was derived in requires the evaluation of 81 terms for each 
neighboring voxel covered by the filter kernel. Therefore, 
without any simplification, it is irr t̂ractical because of its 
enormous computational cost.

3.5. Preflltered Gaussian reconstruction

As it is difficult to explicitly define a filter for the BCC 
grid which fulfills the interpolation constraint, it seems to 
be straightforward to implicitly make an approximating fil
ter interpolating by prefiltering the original discrete samples. 
This conception was introduced by Blu et al. as Generalized 
Interpolation '. Traditional interpolation can be formulated 
as a convolution of the discrete samples /,■ =  /(x ,)  with a 
continuous reconstruction kernel (|)(x):

f ix )  ~  f ix )  =  Y , f i - ^ i x -  Xi)- 
1=0

( 1)

N - l
Y  Wi-(\>{x-Xi). 
1=0

(2)

According to the interpolation constraint, weighting factors 
Wi have to be determined such that /(x ,)  =  fi. This condition 
results in the following system of linear equations:

A • w =  f, (3)

where w =  [wo,w i, . . . , waí_ i], f  =  [ /o , / i , . .- , / j v - i] ,  and 
the elements of coefficient matrix A are defined as j  =  
^ ix i—xj). Since Equation 2 actually defines a convolution, 
the unknown variables w,- can be easily determined by a de- 
convolution performed as a division in the frequency do
main. Therfore, a computationally expensive linear algebra 
method, like the symmetric LU decomposition, does not 
have to applied to solve Equation 3.

Generalized interpolation can be easily adapted to volume 
data defined on a regular rectilinear grid by using a simple 
separable 3D extension. The implementation of a deconvolu
tion for the non-separable BCC grid, however, is not that ob
vious. Nevertheless, applying our recently published method 

the periodicity and symmetry of the BCC grid can still be 
exploited in order to efficiently perform a discrete deconvo
lution in the frequency domain.

Actually a BCC grid can be interpreted as two overlapping 
CC grids (Figure 8). One o f them contains grid points

(red dots) and the other one consists of grid points x?)^ (blue 
dots),whereie { 0 ,1 , . . . ,A ( i - l} ,y '6  { 0 ,l , . . . , iV y - i} ,a n d  
k e  {0 ,1 ,.. .  — 1}. Due to the geometry of the BCC grid

=  t' - T , j - T , k - n  and x f ^  = [{i + 0.5) • T, U  +  0.5) • 
T, {k + 0.5) • T], where T is the sampling distance in the sep
arate CC grids.

In contrast, using generalized interpolation, the shifted ba
sis functions are weighted by coefficients w,-, which are not

Radial Basis Function (RBF) reconstruction of the 
original 3D function /(x )  sampled on a BCC grid is formu
lated as two separate convolutions on the overlapping CC

66



Csébfalvi/Reconstruction o f Optimally Sampled Volume Data

grids:

(4)
In our implementation we used an invertible 3D Gaussian 

kernel; (])(x) =  e“ l*l In order to accurately reconstruct 
the samples and =  /(X y  *) of function
/(x ) , the following conditions have to be fulfilled:

\ j , k  ^t,m,n (5)
l,m̂ n

+  X
l/ttytt

'  (I) _ J 2 )  '

and

/(*[;!*)= X < i„ -« f
.(>)

' (2) _ J 1 )  '
i j ,k

l,m,n

_(2) „(2) ; i. */

lyrtiyn

=  (wC) ®g(*^)i,;,t +  ®g)(,

In Equation 5 discrete convolution kernel expresses the
influence of weights ^ (which are the weighting factors

of the Gaussian kernels centered at positions x { o n t o  the

reconstructed samples Similarly, discrete convolu

tion kernel expresses the influence of weights 
(which are the weighting factors of the Gaussian kernels
centered at positions x |^  onto the reconstructed samples

Furthermore, discrete convolution kernel g is ob
tained by sampling the continuous 3D Gaussian kernel (|)(x). 
More precisely, discrete functions g/ jj^, and gfji. are 
defined as follows:

Si mod NxJ mod Ny,k mod N, — •K lb Á ^])) (6)

mod NxJ mod R,,k mod <[)([* -t- 0 .5 ,y -t-0 .5 , i -1-0.5]), 

° i  mod N,,J mod N„k mod

=  „(1)
° ( i - l )  modAf,,(7- l )  mod Aiy,(i—1) modlVj’

where i6 { -y V ;c /2 ,. . . , lV ^ /2 -I } ,y e { - iV y /2 ,. . . , iV y /2 -  
l},andifc€ { - iV z /2 ,. . . ,A f j /2 - l} .

The unknown weighting factors and wfji^ are de
termined from the system oi N x -N y N z-2 Uneaf equations 
(5). Note that the number of unknown variables is the same 
as the number of conditions, therefore there is a unique so
lution. Since the unknown variables are formulated as two 
3D discrete functions defined by convolution operations, the 
solution can be efficiently obtained by deconvolution opera
tions performed in the frequency domain. Let us denote the 
discrete Fourier transforms of discrete functions 

p- ■ Í and bv^ i j , k ’ ^i,J,k' ^i,j,k’ ^ i j j i  t̂x,p,Y’ «,p,Y’ «,P,y’
'̂ <lp,Y> ^n,p,Y’ ^a,p,r G^^^pyespectively. Since convo
lution in the spatial domain is equivalent to multiplication in 
the frequency domain. Equation 5 is formulated in the fre
quency domain as follows:

(7)"a,p,Y” “ 'P'Y ̂  '̂ a,p,Y^a,p,Y ^a,p,Y’

% ,p,Y^a,p,Y^ "a,p,Y'-'“ .P.Y ~  ^a,p,Y’

By solving Equation 7, ^ and  ̂are obtained as;

( 8)

'^S .Y  =

Finally, for RBF reconstruction of / ( x )  (Equation 4), 
weighting factors and wfji^ are calculated by inverse 

discrete Fourier transforms of VV|̂  ̂  ̂  and p ^ respectively.

Note that, using the above reconstruction scheme, a con
tinuous Gaussian reconstruction follows a discrete Gaussian 
deconvolution, which is actually a preflltering of the origi
nal discrete samples. Therefore we called this scheme Pre
filtered Gaussian Reconstruction (PGR) The prefiltering 
has to be performed only once, and afterwards an arbitrary 
sample can be evaluated by a simple Gaussian convolution 
according to Equation 4. For this operation only the pre
filtered BCC samples (weighting factors and 
need to be stored in the main memory. Although the contin
uous Gaussian kernel has an infinite extent, it can be well 
approximated by a truncated Gaussian kernel in order to 
efficiently implement spatial-domain convolution. Because 
of this truncation PGR is theoretically an approximation. 
However, the approximation error vanishes exponentially if 
the number of neighboring voxels taken into account is in
creased. Therefore, from a practical point of view, PGR is an 
interpolation method. The influence of the truncated kernel 
is usually restricted to the interval [—3a,3a]^, since outside 
this interval the Gaussian function practically equals to zero. 
In our implementation we wanted to limit the convolution 
window t o 4 x 4 x 4 x 2  voxels, therefore we used o  =  0.6.

67



Csébfalvi/Reconstruction o f Optimally Sampled Volume Data

data set MRI brain CT engine

linear box spline 9.06 sec 13.17 sec

cubic box spline 34 min 51 min

discrete prefiltering 12.16 sec 3.34 sec

Gaussian reconstruction 2.38 min 3.48 min

Table 1: Rendering times using different reconstruction 
methods.

Figure 9 shows images rendered by using linear box- 
spline (a), cubic box-spline (b), and prefiltered Gaussian (c) 
reconstructions. The gradients for shading were estimated 
by central differencing on the reconstructed function. Al
ternatively the partial derivatives can also be obtained by 
convolving the discrete volume representation with the par
tial derivatives of the reconstruction kernel. Figure 10 shows 
the angular errors of the estimated gradients, where angu
lar error of 30 degrees is mapped onto white. Note that lin
ear box-spline reconstruction causes severe aliasing, while 
cubic box-spline reconstruction results in smoothing, and 
therefore slight displacement of the isosurface. In contrast, 
PGR (a =  0.6) well preserves the depth of the wave valleys 
without significant aliasing.

PGR was tested also on practical data sets. As the BCC 
grid is a subgrid of the CC grid, we artificially produced 
BCC-sampled data by simply downsampling CC-sampled 
real-world data sets on a BCC subgrid. Nevertheless, in or
der to naturally generate BCC-sampled data directly by a CT 
or MRI scanner, only the tomographic reconstruction soft
ware of such devices need to be modified. Since the slices are 
usually computed by the classical Filtered Back-Projection 
(FBP) algorithm the discrete tomographic reconstruction 
can be easily performed on a translated 2D square grid for 
every second slice in order to provide BCC samples. How
ever, until commercial BCC-sampling scanners are avail
able, such a natural data acquisition on an optimal BCC grid 
is not possible.

Figure 11 shows the reconstructions of our artificially pro
duced BCC-sampled data sets. The resolution of the original 
MRI scan of a human brain was 256 x 256 x  166, while the 
resolution of the original CT scan of an engine block was 
256 X 256 X  110. From these CC-sampled data sets we se
lected 128 X  128 X  83 X  2 and 128 x 128 x 55 x 2 BCC sam
ples respectively. Note that, using linear box-spline recon
struction (a, b) aliasing appears as a regular pattern on the 
surfaces, while cubic box-spline reconstruction (c, d) blurs 
the high-frequency details. As it is clearly visible in Fig
ure 11 (e, f), PGR does not smooth the surfaces, and pre
serves the fine details even better than linear box-spline re- 
constmction does.

6 8

Figure 11: Reconstruction o f BCC-sampled practical data, 
(a, c, e): MRI data o f a human brain containing 128 X  128 x 
83 X 2 BCC samples, (b, d ,f): CT data o f an engine block 
containing 128 x 128 x 55 x 2 BCC samples, (a, b): Lin
ear box-spline reconstruction, (c, d): Cubic box-spline re
construction. (e,f): Prefiltered Gaussian reconstruction.

Rendering times measured on a 3GHz Intel Pentium 4 PC 
with 1GB of RAM are shown in Table 1. Images of reso
lution 256 X  256 were generated by the same ray caster us
ing different reconstruction techniques for resampling. Al
though PGR is slower than linear box-spline reconstruction, 
it is significantly faster than cubic box-spline reconstmc- 
tion. Note that the time cost of the preprocessing for PGR, 
which is the discrete prefiltering, is relatively low compared 
to the rendering time. Nevertheless, the preprocessing has 
to be performed only once for each data set, and afterwards 
the preprocessed volume can be rendered from an arbitrary 
viewing direction.

4. Conclusion

In this paper several reconstruction techniques proposed for 
BCC-sampled volume data have been reviewed and com-



Csébfalvi /Reconstruction o f OptimalSy Sampled Volume Data

(a) Linear box spline. (b) Cubic box spli ne. (c) Prefiltered Gaussian.

Figure 9: Reconstruction o f the Marschner-Lobb test sdgnalfrom 32 x 32 x 32 x 2 BCC samples.

\  » X .

. /•

(a) Linear box spline. (b) Cubic box spline. (c) Prefiltered Gaussian.

Figure 10: Angular errors o f the estimated normals and the exact normals. Angular error o /3 0  degrees is mapped to white.

pared. As it has been demonstrated, the most important 
drawback of the BCC grid is its non-separability, which 
makes it difficult to extend the well-known ID reconstruc
tion filters, like the linear tent filter or popular cubic filters 
by a simple separable extension.

In order to define exact interpolating filters for the BCC 
grid, two strategies can be followed. One possibility is to de
rive an explicit kernel which is easy to evaluate and fulfills 
the interpolation constraint, like the linear box spline. An
other alternative is to implicitly construct an interpolating 
filter from an approximating filter by adapting the concep
tion of generalized interpolation to the BCC grid.

Both approaches have disadvantages. For example, 
higher-order interpolating kernels are rather difficult to ex
plicitly define for the BCC grid, therefore such a filter has 
not been explored yet. On the other hand, generalized in
terpolation requires the frequency-domain prefiltering of the 
original samples.

According to our experiments, currently the best results 
can be achieved by using our prefiltered Gaussian recon

struction technique. Although PGR is an order of magnitude 
faster than the cubic box-spline reconstruction, it is still too 
exfJcnsive computationally for practical applications.

Although the superiority of the BCC grid over the CC 
grid has already been demonstrated in several papers, CC- 
sarnpled volumes can still be more efficiently rendered by 
using hardware-accelerated rendering techniques, like 3D 
texcture mapping. Therefore, until high-quality reconstruc
tion methods proposed for the BCC grid are adapted to 
the recent programmable graphics cards, the traditional CC- 
sarnpled volume representation will probably remain more 
popular.

Acknowledgements

Thiis work has been supported by the Postdoctoral Fellow
ship Program of the Hungarian Ministry of Education.

References

1. T. Blu, P. Thévenaz, and M. Unser. Generalized inter
polation: Higher quality at no additional cost. In Pro-

69



Csébfalvi /Reconstruction o f Optimally Sampled Volume Data

ceedings o f IEEE International Conference on Image 
Processing, 661-61 1999. 4

2. J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere- 
packings, lattices, and groups. Springer-Verlag New 
York, Inc., 1987. 1

3. B. Csébfalvi. Prefiltered Gaussian reconstruction for 
high-quality rendering of volumetric data sampled on 
a body-centered cubic grid. In Proceedings o f IEEE 
Visualization, pages 311-318, 2005. 4, 5

4. A. Entezari, R. E>yer, and T. Möller. Linear and cubic 
box splines for the body centered cubic lattice. In Pro
ceedings o f IEEE Visualization, pages 11-18, 2004. 2, 
3 ,4

5. T. C. Hales. Cannonballs and honeycombs. 
47(4):440-449, 1998. 1

AMS,

6. Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, 
K. P. Gaither, and T. Ertl. Interactively visualizing pro- 
cedurally encoded scalar fields. In Proceedings o f Joint 
EUROGRAPHICS-IEEE TCVG Symposium on Visual
ization, pages 35-44, 2004. 4

7. A. C. Kak and M. Slaney. Principles o f Computerized 
Tomographic Imaging. IEEE Press, 1988. 6

8. S. Marschner and R. Lobb. An evaluation of recon
struction filters for volume rendering. In Proceedings 
of IEEE Visualization, pages 100-107, 1994. 2, 3

9. D. Mitchell and A. Netravali. Reconstruction filters 
in computer graphics. In Proceedings o f SIGGRAPH, 
pages 221-228,1988. 2

10. T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A 
comparison of normal estimation schemes. In Proceed
ings o f IEEE Visualization, pages 19-26, 1997. 2

11. T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and 
R. Yagel. Design of accurate and smooth filters for 
function and derivative reconstruction. In Proceedings 
o f IEEE Symposium on Volume Visualization, pages 
143-151, 1998. 2

12. B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, 
and K. R. Subramanian. Interpolating implicit surfaces 
from scattered surface data using compactly supported 
radial basis functions. In Proceedings o f Shape Model
ing International, pages 89-98, 2001. 4

13. A. V. Oppenheim and R. W. Schafer. Discrete-Time Sig
nal Processing. Prentice Hall Inc., Englewood Cliffs, 
2nd edition, 1989. 1

14. D. P. Petersen and D. Middleton. Sampling and re
construction of wave-number-limited functions in n- 
dimensional euclidean spaces. Information and Con
trol, 5(4):279-323,1962. 1

15. N. J. A. Sloane. The sphere packing problem. In Pro

ceedings o f International Congress o f Mathematicians, 
pages 387-396, 1998. 1

16. T. TheuBl, H. Hauser, and M. E. Gröller. Mastering 
windows: Improving reconstruction. In Proceedings of 
IEEE Symposium on Volume Visualization, pages 101- 
108, 2000. 2

17. T. TheuBl, O. Mattausch, T. Möller, and M. E. Gröller. 
Reconstruction schemes for high quality raycasting of 
the body-centered cubic grid. TR-I86-2-02-II, Institute 
o f Computer Graphics and Algorithms, Vienna Univer
sity o f Technology, 2002. 3

18. T. TheuBl, T. Möller, and M. E. Gröller. Optimal reg
ular volume sampling. In Proceedings of IEEE Visual
ization, pages 91-98, 2001. 2 ,3

19. G. Turk and J. F. O’Brien. Shape transformation using 
variational implicit functions. In Proceedings o f SIG
GRAPH, pages 335-342,1999. 4

20. D. Van De Ville, T. Blu, M. Unser, W. Philips, 
I. Lemahieu, and R. Van de Walle. Hex-splines: A novel 
spline family for hexagonal lattices. IEEE Transactions 
on Image Processing, 13(6):758-772, 2004. 3

70



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Computer Aided Diagnosis based on Second Derivatives of
Volume Data

József Koloszár, László Szirmay-Kalos, Zsolt Tarján, and Dávid Jocha

Department of Control Engineering and Information Technology, Technical University of Budapest 
Budapest. Magyar Tudósok krt. 2., H-1117, HUNGARY 

Email: szirmay@iit.bme.hu

Abstract
This paper proposes a robust algorithm to detect colon tumors using the second derivatives o f volume data. We 
obtain the eigenvectors o f the Hessian matrix, which represent the second order derivatives o f a vector variate 
scalar valued function. Based on the sign and scale o f the eigenvalues blobby tumors can be selected on a given 
scale. In order to reduce noise and set the scale o f the analysis, Gaussian filtering is applied together with the 
computation o f the derivatives. Our final filter shows how blobby a neighborhood is on several scales. The identi
fied regions can classify CT data to contain tumors and also to control the navigation o f the virtual camera o f the 
medical doctor.

Keywords: Volume visualization, Second derivatives, Com
puter aided diagnosis

1. Introduction

Medical devices, such as CT and MRI equipment, can pro
vide density values of an object at regularly placed locations. 
The density values are stored in voxel arrays. Voxel arrays 
are visualized by direct or indirect algorithms, allowing the 
medical doctor to examine the measured datâ ' '. Based on 
the presented images, the physician identifies tumors and de
cides on the subsequent actions. This process can be speeded 
up and made easier if the data is preprocessed and the atten
tion of the physician is drawn to those critical points, which 
are primary candidates for being tumors. This helping pro
cess is called computer aided diagnosis.

Based on the voxel data computer aided diagnosis iden
tifies certain locations or neighborhoods where the critical 
artifacts show up. This process can also be imagined as fil
tering. The voxel data is taken as a discrete representation 
of the originally continuous density field. At each possible 
location this density field is combined with a recognition 
filter, which generates one or several values describing the 
local neighborhood. Then these values are used to make the 
final yes or no decision. On the other hand, the selected local

neighborhood may also affect the path of the virtual camera 
through which the medical doctor sees the internal organs.

In order to design such an algorithm, the recognition filter 
should be carefully selected to clearly separate those cases, 
which might be identified as tumors. On the other hand, the 
decision based on the filtered values should also be as accu
rate as possible. A promising way is to mimic how an experi
enced medical doctor locates tlie shapes that can be tumors, 
and how he makes the final conclusion from the shape char
acteristics. When the process of the diagnosis is modeled, we 
should be specific and reflect all important factors while ig
noring unimportant ones. The inclusion of important factors 
is necessary to make the method robust and reliable, while 
ignoring unimportant factors is essential to establish a fast 
and real-time method.

Automatic diagnosis may result in two types of false deci
sions. The decision is false positive if it identifies a shape as 
a tumor, which is not. On the other hand, the decision is false 
negative if the process misses a tumor. In medical diagnosis 
the reduction of false negative cases is essential.

In this paper we present an algorithm to detect potential 
tumors inside a colon. If this investigation were made by a 
medical doctor, he would search for blobby structures on the 
colon walls, and examining the size and the form of these

71

mailto:szirmay@iit.bme.hu


Koloszár, Szirmay-Kalos, Tarján, Jocha /  Computer Aided Diagnosis based on the Second Derivatives o f the Volume Data

blobs he could decide whether or not the particular blob is a 
tumor. In order to mimic this procedure we design a recogni
tion filter that is particularly sensitive to blobs of given size 
and provides numeric data representing the form of the blob. 
The recognition filter is based on the second order deriva
tives of the reconstructed density function.

2. Previous work

While shape analysis and shape detection have received sig
nificant attention in 2D image processing, they are relatively 
new in 3D volume analysis. Two dimensional shape detec
tion methods usually measure certain features that can char
acterize the shapes o f interest and make decisions based on 
the measured values. These features are required to be trans
lation and rotation invariant since translation and rotation 
do not alter shapes. The practically useful features include, 
among others, perimeter, area, circularity, spatial moments, 
main inertia, derivatives, etc.

Having computed the feature values, they are grouped in a 
vector and this vector is compared with the properties of the 
shape or shapes to be identified. If the distance from the fea
ture vector of the shape to be identified is small, then we can 
report that the shape is found. Setting the distance threshold, 
we can make a compromise between false negative and pos
itive decisions. If there are several candidate shapes, nearest 
neighbor search can be applied to find the closest candidate. 
When such algorithm is designed, the critical problems is 
the definition of the feature vector, especially when the class 
of target shapes is not well defined. This is always the case 
in medical diagnosis since different tumors are not exactly 
similar from geometric point of view.

In order to cope with this problem, we can avoid infor
mation extraction and suppose the image in a smaller neigh
borhood to be the feature vector. In the case of 5 x 5 pixel 
neighborhoods of a gray-scale image, the dimension of the 
feature vector is 25. To select from such high-dimensional 
vectors, neural nets can be used, which are trained by real- 
world examples (e.g. by images of real tumors). Unfortu
nately, the image itself is not rotation invariant, thus the neu
ral net should be trained with different rotations of the im
ages. Neural nets are very elegant and require no a priori 
knowledge of the features to be identified, but their practical 
application also has disadvantages. To train a net to iden
tify high dimensional vectors, very many training cases are 
needed, which are not usually available in medical practice. 
The other problem is that probability of false positive and 
negative decisions is not easy to control.

The best results can be obtained by the combination of 
feature extraction and neural net based identification. A rel
atively low dimensional feature vector is computed, which 
contains rotation and translation invariant measures. Then 
instead of distance comparison, the neural net is fed by this 
feature vector to make the final decision.

72

2.1. Local measures

Those features that are based on the Taylor series expansion 
of the volume data are called local measures since the Taylor 
series is a good local approximation of a function. For ex
ample, the second-degree approximation of a function f{x) 
around xq is:

f{x )  /(Xo) -b d f
dx •(x :-x o )-f 2 dx^

■{x - xqY

This approximation depends on function value /(xq), deriva
tive d f/d x  and second derivative d^ jdY '. The first deriva
tive is the slope of the function. The second derivative is the 
speed describing how fast the slope of the function is chang
ing, thus is a measure of the function curvature (figure 1). 
In fact, the absolute value of the second order derivative is 
inversely proportional to the radius of a tangent circle. The 
sign of the second derivative also shows whether the high 
curvature area is a hill or a valley.

Figure 1: A function and its second-order derivative. Note 
that the absolute value o f the second derivative is inversely 
proportional to the curvature radius. The sign o f the second 
derivative makes a distinction between hills and valleys. The 
second derivative is scaled in the figure to improve visual 
comprehension.

Sato et al have extended this idea to the analysis of 3D 
density data An excellent review and an application to 
data compression can be found in Suppose that the den
sity value of the examined object at point r = (x,y, z) can be 
described by function g{f). The second-order approximation 
of the density function around 7q is the following:

S(^) = g ( ^ o )  +  ( ? - A ) )  • (V g )( fb ) - f

\ ■ [ r - r o f  ■ (V^g)(?o) • ( r - ?o),

where

Vg =  (dg/Bx,dg/dy,dg/dz)



is the gradient vector and 

d^g /dx \

KoloszAr, Szirmay-Kalos, Tarján, Jocha /  Computer Aided Diagnosis based on the Second Derivatives o f the Volume Data

V^g =
d^g/dxdy, d^g/dxdz

d^g/dyhx, d^g/dy^, d^g/dydz (1)
. di^g/dzdx, d^g/dzdy, 3Í^g/d^ .

is the Hessian matrix. The Hessian matrix allows to express 
the second derivative in an arbitrary direction represented by 
unit vector v

Unfortunately, the gradient and the Hessian matrix are not 
invariant to rotations, and they strongly depend on the axes 
of the coordinate system. Such dependence can be elimi
nated for the gradient if its absolute value is considered since 
I Vg| becomes independent of the orientation of the axes.

In order to make the second derivative measures also ro
tation independent, we have to select those directions, which 
correspond to the maximal and minimal second derivatives. 
As can be proven these directions are the eigenvectors of 
the Hessian matrix, where the corresponding second deriva
tives are the eigenvalues. Since the Hessian matrix is sym
metric, the eigenvalues are real.

The eigenvalues can be obtained by solving equation 

d e t{X l-H ) = 0,

where I is the unit matrix. Since detQJ — / / )  is a third- 
degree polynomial, the roots can be found analytically in an 
efficient way (see Appendix).

Let us denote the three eigenvalues by A.i,X2 ,A.3 , and as
sume that A.) >  ^ 2  >  A3 . These eigenvalues express the min
imum and maximum of the second derivatives, or the max
imum and the minimum of the curvature radii. If the three 
eigenvalues have similar sign, then the function is locally ap
proximated by an ellipsoid. If the sign is negative, then we 
have a hill, otherwise a valley. The minimum and maximum 
curvatures of an ellipsoid are proportional to the lengths of 
the main axes. A small |A| value corresponds to a long axis, 
while a large |A| to a short axis. If all axes are short (i.e. the 
absolute values of all eigenvalues are large), then the ellip
soid is a small blob (figure 2). If all axes are long, then the el
lipsoid cannot be recognized, and is said to be homogeneous 
on the local level. If one axis of an ellipsoid is much longer 
than the other two (i.e. the absolute value of one eigenvalue 
is much smaller than the other two), then the ellipsoid has 
a tubular shape. If two axes are much longer than the third 
one, then the ellipsoid looks like a sheet.

Table 1 summarizes the possible conclusions that can be 
drawn by inspecting the three eigenvalues.

Summarizing second order local measures include the 
density value g(?o)< the gradient magnitude |(Vg)(ro)|, and 
the eigenvalues of the Hessian matrix Ai, A2 , A3 . All of them 
are translation and rotation invariant, thus are primary can
didates for features.

Figure 2: Local quadratic approximation. Based on the rel
ative absolute values o f the eigenvalues, blob, tubular and 
sheet-like structures can be identified.

classification

X,3 ÍVÍ X-2 ~  Xj 0 blob-like hill

A3 R5 A2 A| ss 0 tubular-like hill

A3 <C A2 A] ~  0 sheet-like hiU

0  ^  X3 ^  X2 ^ homogeneous area

0 A3 Rí A2 A] sheet-like valley

0  RÍ A3 <C A2 ~  A] tubular-like valley

0 A3 Ri A2 ~  Ai blob-like valley

Table 1: Classification o f the blob-, tubular-, and sheet-like 
structures

2.2. Computation of the derivatives of sampled datasets

The measuring process takes discrete samples at regular 
points p C P ,  thus the function stored in the voxel array is:

gs(r)= g{f)-  X
p€P

where 6  is the Dirac-delta function. From the sampled sig
nal, the continuous signal can be reconstructed by convolv
ing gs{r) with the impulse response of an ideal low-pass fil
ter of limiting frequency equal to the upper band limit of the 
original signal (the sampling theorem requires the band limit 
to be lower than the half of the sampling frequency).

The impulse response of the ideal low-pass filter is 
sin{nx)/nx, which is rather difficult to convolve with, be
cause of its oscillating shape and infinite support. Due to 
computational issues, the ideal low-pass filter is approxi
mated, for example, by the Gaussian-filter, thus the recon
structed signal is;

g{r) {k^g ,]{r)

where k is the impulse response (kernel) of the 3D Gaussian-

73



Koloszár, Szirmay-Kalos, Tarján, Jocha /  Computer Aided Diagnosis based on the Second Derivatives o f the Volume Data

Figure 3: The impulse responses o f the Gaussian filters with 
different standard deviations and o f the ideal low pass filter 
(sin{nx)/nx)

Figure 4: Frequency domain characteristics o f the Gaussian 
filters with different standard deviations and o f the ideal low 
pass filter

filter having standard deviation a: 

p/2o"
k(r,a) =

(o v ^ )^  0\/2jc 0 \ /2 i  0\/2rt

Standard deviation a  should be set to make the filter effi
ciently cut off frequencies higher than the upper band limit 
of the measured signal. If the upper band limit is about half 
of the sampling frequency, which is usually I (the samples 
are at unit distance), then o  e  [0.5,1] is usually satisfactory 
(figure 4). If a  is smaller than 0.5, then high-frequency alias
ing occurs. On the other hand, if o  is bigger than 1, the higher 
frequency components of the signal are eliminated. Large a

values represent filters that are combinations of a low-pass 
filter and the reconstruction filter.

Convolution commutes with differentiation, thus the 
derivatives of the reconstructed signal can be obtained by 
convolving with the derivative of the filter kernel. For exam
ple, the derivative of g{f) according to x  is (the derivatives 
according to y and z are similar):

... ^{k<8>gs){r) dk{r) ^  _
" I T  ~  ^  “  “ a T ® * * -

Thus to compute all second partial deriva
tives, the partial derivations of the filter kernel 
(d^k/dx^ ,d^k/dxdy,d^k/dxdz, . . . ) should be pre-computed, 
and the sampled data is convolved with the required 
derivative kernels. The Gaussian-kemel as well as its 
derivatives are separable, which means that the three-variate 
function can be expressed as the product of three one-variate 
functions parameterized by x, y  and z, respectively. Using 
X as a parameter, the one-variate function, and its first and 
second derivatives are (figure 5):

k(x,o) =  — U
O v ^

dk{x,a)
dx o'*x/27t

d^k{x,a) _
dx^ o5V 2S

Figure 5: Gaussian-kemel and its first and second order 
derivatives (o  =  1)

3. Design of the tumor detection filter

Colon tumors are blob-like hill features in a given size range. 
The proposed detection algorithm looks for cases corre
sponding the first row of table I, but it also has to lake into

74



Koloszár, Szirmay-Kalos, Tarján, Jocha / Computer Aided Diagnosis based on the Second Derivatives o f the Volume Data

account the density of the tumor, the shapmess of its bound
ary (gradient), and the size of the blob. In the following sec
tion the size control problem is discussed.

The Gaussian-kernel is not a perfect reconstruction ker
nel, thus the derivatives are just approximations. For exam
ple, if the sampled values are in [0,1], then the maximal 
values of the first and second derivatives that can be recon
structed is approximately

 ̂dk{x, o ) 1
dx

5 (i)(

max 5(3c)®
d^k{x,a)

dx^ a ^ '/2 n '

Note that standard deviation a  can be used to control the 
possible range of the derivatives. If we are interested in fea
tures where the second derivatives are in a prescribed range, 
then o  should be set to make the maximum derivatives close 
to the top of the prescribed range. In this way we can max
imize the sensitivity of our filter. This can mean that a  is 
greater than the value needed for the optimal reconstruction, 
thus all those features that are smaller than the interesting 
ones are eliminated.

scales if we examine diflferent sizes simultaneously. Sato et 
al approached this problem assuming that the signal is also 
a Gaussian function. However, in tumor diagnosis, this as
sumption is not necessarily true, since tumors have a well 
recognizable boundary.

Figure 7: The eigenvalue at a center o f a sphere o f radius 
r = Ra computed by a Gaussian filter o f standard deviation 
o

Figure 6: Low pass filtering makes larger features de
tectable. Note that the second derivatives are scaled in the 
figure to improve visual comprehension.

Thus to present a more accurate analysis, let us suppose 
that the volume data contains a sphere of radius r. The den
sity value is 1 inside the sphere and zero outside. Let us also 
assume that the sampling frequency is high enough to make 
the discrete sums close to the continuous integrals. The first 
derivatives at the center of the sphere is approximated by 
the convolution of the density function and the filter kernel 

. k(y,a) ■ k(z, tj), which can be expressed by the fol
lowing integrals

^  = f
dx J

x̂ +)̂ +ẑ <r'̂ c^{2n)3/2
-(F“+ /+ ẑ )/2<F dxdydz.

Applying the X =  jc/ct, Y = y /a ,Z  = z /a ,R  =  r /a  substitu
tions, we obtain;

dx 0  J (2k)3/2

Figure 6 demonstrates why the low pass filtering is nec
essary to allow the detection of larger features. The origi
nal function contains a single hill, which is modulated by 
a high-frequency wave. The curvature values fluctuate ac
cording to the high-frequency wave, not permitting to de
tect the average curvature that corresponds to the hill. How
ever, when low-pass filtering eliminates the high frequency 
wave, the curvature clearly identifies the original hill. From 
this observation we can conclude that a cmcial part of fea
ture recognition is the definition of the appropriate scale or

ITie first and second derivatives at the center of the sphere 
are approximated by the convolution of the density func
tion and the filter kernel — • k{y, o ) • k{z, 0) and •
k(y,a) ■ k(z,<y), respectively, which can be expressed by the 
following integrals

Mr] = /
-02

o2(2jt)2'^2
-(^+y^+i^)/2a^ dxdydz.

75



Koloszár, Szirmay-Kalos, Tarján, Jocha / Computer Aided Diagnosis based on the Second Derivatives o f the Volume Data

Applying the X =xl<5,Y = y la ,Z  = zfa ,R  = r /o  substitu
tions, we obtain:

1X(R)=  -2
J (2jt)/

X ^ -1
3/2

■ g-(-^"+i'"+z")/2 dXdYdZ =

o 2  V  97t

Note that product XcP' is a function of R = r/o , which 
is depicted in figure 7. This function has a minimum at 
R = r /a  = i/3, which corresponds to the largest curvature 
the filter can appropriately reconstruct. If r /a  > \/3 , then 
the curvature of the sphere decreases, and the reconstructed 
value follow this change. However, when r /a  < V i ,  the cur
vature of the sphere increases, but the absolute value of the 
reconstructed eigenvalue decreases. Here, the Gaussian acts 
as a low pass filter, and instead of computing the second 
derivative, it gradually eliminates the sphere itself.

Suppose that the smallest feature that should be detected 
can be approximated by a sphere of radius r. Figure 7 tells 
us to set the standard deviation of the Gaussian filter to g 
r/1.74. Such setting allows us to detect features of radius 
[r,3r] while eliminating features of radius smaller than r.

There is one final issue of the Gaussian-kemel, which 
should be addressed here. The Gaussian-kemel has infi
nite support, which is impossible to handle during convo
lutions. To cope with this problem, the Gaussian-kemel is 
truncated, which means that it is assumed to be zero, where 
the original kernel is small. The size of the support do
main depends on the standard deviation a. For example, if 
o  =  0.5, then the kernel values at the sampling positions
0 .  1.2 are 0.797,0.108,0.00027, respectively. It means that 
we can suppose that the kernel is zero outside region [—2,2]. 
Larger a  values, however, require filters with greater sup
port. If tmneation happens at value t= x /a ,  then the integral 
of the cut off part is 1 — <!>(/), where d> is the Gaussian distri
bution function. As a mle of thumb we can truncate at r =  4,
1. e. x = 4a since in this case the integral of the cut off part is 
less than 0.00003.

The tmneation of the kernel might have the undesirable 
effect that the reconstmeted second derivatives of constant 
functions will not be zero. Tliis is due to the fact that the 
integral of the second derivative o f the tmneated kernel is 
not necessarily zero. Note that this can never happen when 
the first derivative is computed since the first derivative 
is anti-symmetric (dk(—x ,a )/d x  =  —dk{x,a)/dx) To solve 
the problem of second derivatives, a  should be fine tuned in 
a way that the sampled second derivatives of the tmneated 
kernel sums up to zero.

4. The detection algorithm

In the preprocessing phase the standard deviation a  is ap
proximated from the expected size of the tumors relative to

the sampling resolution of the device. If it turns out that a  is 
too small (smaller than 0.5), then the criteria of the sampling 
theorem cannot be met, thus such features cannot be recog
nized from the given data set. If a  is not too small, then the 
corresponding window size is determined, and a  is tuned to 
give zero second derivatives for homogeneous regions.

The diagnosis process starts with identifying the voxels 
corresponding to the colon boundary. This way the feature 
detection can be restricted to the neighborhood of the color 
walls, since colon tumors can show up only at these re
gions. In the selected neighborhoods, the shape detection fil
ter is run at eaeh voxel. Tumors correspond to bright blob
like stmetures, thus tlie maximum eigenvalue is taken and is 
compared to a limiting value. If the maximum eigenvalue is 
less than the threshold, than this voxel is marked. During the 
visualization step the neighborhood of the marked pixels are 
colored to ease visual detection.

In order to test the algorithm we made measurements on 
a phantom (figures 8, 9). The sampling resolution was 2mm. 
The tumor identification process searched the 20mm neigh
borhood of the colon wall. The expected tumors are of 1cm 
size, thus a  was set to 6, which corresponds to 25 x 25 x 25 
filter. Finally, the 10mm neighborhood of the marked voxels 
were colored to red.

The selected regions can also control the virtual camera 
of the user. Suppose that each selected region is assigned a 
weight that is inversely proportional to the square distance 
of the camera and the center of this region. Let us compute 
a vector from the camera toward each selected region and 
multiply the vectors by the weight. This operation will re
sult in a vector that always points toward the closest selected 
region. Adding this vector to the derivative of the path, we 
can obtain the heading of the camera. Note that at neighbor
hoods where there are no selected regions, the camera would 
head at where it is going to, but would turn to the tumor if it 
is close.

5. Conclusions

This paper presented a robust filter to identify tumors in a 
CT data. The filters are based on second derivatives com
puted on several scales. The regions selected by this filter 
are highlighted and the camera heading is also changed ac
cordingly.

Thus the proposed method can be used to quickly process 
a patient’s examination data and decide whether it contains 
blobby features that require further investigation. Wlien the 
doctor flies through the CT data, the same information forces 
him to carefully look at the selected blobby features.

6. Acknowledgements

This work has been supported by the National Scientific Re
search Fund (OTKA ref. No.: T042735), and IKTA ref. No.: 
00159/2002.

76



Wl

Koloszár, Szirmay-Kaloí. Tarján, Jocha/ Computer .Aided Diagnosis' based on the Second Derivatives o f the Volume Data

distance field recognized feature

Figure 8: Steps o f the diagnosis process: Segmentation, colon wall identification, distance field generation, and shape recogni 
lion. The yellow points show those voxel centers where the filter reported blobs. The red area is the colored neighborhood.

References

1. B. Csébfalvi. Interactive Volume-Rendering Tech
niques for Medical Data Visualization. PhD 
thesis, Technische Universitat Wien, Insfitut
tur Computergraphik und Algorithmen, 2001. 
http://www.cg.tuwien.ac.at/research/theses/. 1

2. A.D. Drebin, L. Carpenter, and P. Hanrahan, Volume 
rendering. Computer Graphics, 22(4), 1988. 1

3. J. Hladuvka. Derivatives and Eigensystemsfor Volume- 
Data Analysis and Visualization. PhD thesis, Institute

of Computer Graphics, Vienna University of Technol
ogy, Vienna, Austfia, 2002. 2, 3

4. M. Levoy. Efficient ray tracing of volume data. ATG, 
9(3):245-261, 1990. 1

5. Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shi- 
raga, S. Tamura, and R. Kikinis. Tissue classification 
based on 3D local intensity structures for volume ren
dering. IEEE Transactions on Visualization and Com
puter Graphics. 6(2): 160-180, 2(XX). 2

77

http://www.cg.tuwien.ac.at/research/theses/


Koloszar, Szinnay-Kalos, Tarján. Jocha /  Computer Aided Díagno.ds based on the Second Derivative.^ of the Volume Data

Figure 9: 3D views o f the diagnosis process.

78

I



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Conservative rasterization of texture atlases

László Szécsi 

szecsi@iit.bme.hu
Department of Control Engineering and Information Technology, 

Budapest University of Technology and Economics, 
Budapest, Hungary

Abstract
Render-to-texture has become a very basic operation in graphics hardware programming, allowing for compu
tations to be decomposed into consequent passes. Most prominently, all kinds o f lighting algorithms, including 
stochastic iteration, photon maps, caustics, or light animation can be transposed into the two-dimensional sur
face domain by using texture atlases. Computations are carried out using a render-to-atlas operation, and data 
is later accessed by texturing. However, the rasterization algorithm supported by the hardware does not neces
sarily trigger rendering to every texel that can be addressed by surface texture coordinates. This causes artifacts 
near texturing seams. In order to eliminate them, we have to simulate conservative overestimated rasterization of 
triangle charts when rendering to the texture atlas.
In this paper, we propose a method that processes the original model geometry and constructs a minimal set o f line 
segments that will rasterize to complete the texture atlas. There is no increase in the complexity o f the geometry, 
and the overlying computation algorithm does not have to be modified.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Bitmap and framebuffer 
operations

1. Introduction

One of today’s ongoing trends is that global illumination 
algorithms are appearing in all kinds of everyday applica
tions to an increasing extent, making use of the capabilities 
of the graphics hardware. Global illumination, in essence, 
is the uncorqjromising solution o f the rendering equation, 
where the inherently recursive nature of light transport is re
spected. Research has shown that taking the solution to inter
active speeds must rely on data reuse, where the data struc
ture can range from finite elements'^ through photon maps'* 
to ray caches®. On the other hand, graphics hardware was 
engineered to effectively support texture mapping. Both the 
opportunity and the challenge of real-time global illumina
tion are to store reusable data in textures. Along with all 
stages of the hardware pipeline, texturing is also continu
ously growing more customizable. Most importantly, images 
can be rendered to textures, and with programmable vertex 
and pixel shaders, this allows computations generating the 
data textures also to be implemented on the GPU.

1.1. Texture atlases

The most straightforward and often unavoidable means to 
pre-compute and store illumination data is the usage of tex
ture atlases. Whenever we need to know the illumination of 
surface elements without fixing a specific viewing direction, 
we may carry out computations at sample points of the sur
face: these will be the texels o f our texture atlas. In case of a 
fixed light position, we may also pre-compute a shadow map 
to speed up lighting, but it may not be as effective as the us
ing the atlas. Furthermore, if we wish to pre-compute inter
reflections independent of both light position and viewing 
direction, the use of a texture atlas is imperative. Similarly, 
if we have to blend impostors on surfaces, like in the caus
tic generation method using approximate ray tracing*, it also 
has to be performed in the texture atlas domain. To name a 
further example, photon map gathering^ was shown to be ef
fectively performed by storing photon hits in a texture atlas.

An important feature of textures is the possibility of fil
tering. While a texture atlas may not sample surface points 
very densely, bilinear interpolation of pre-computed values

79

mailto:szecsi@iit.bme.hu


Szécsi /  Conservative rasterization

comes practically for free. StiU, quality will depend on the 
resolution, and poor sampling may appear as texturing arti
facts. However, similar effects appear for any algorithm that 
reuses stored data.

Figure 1: An atlas texture with triangle edges. The mesh is 
decomposed to triangle charts.

A texture atlas has to ensure a unique mapping of tex
ture coordinates to surface points. While some of the texture 
space may be empty, every surface point has to have unique 
texture coordinates. It is also desirable to avoid discontinu
ities. Generally, the texture atlas mapping for a triangular 
mesh will contain a number of flattened charts of adjacent 
triangles, separated by a few texels wide empty margin (Fig
ure 1). The contours of these charts are the seams of the map
ping: that is where adjacent surface points are mapped to 
distant coordinates. Seams are usually unavoidable without 
extremely distorting triangles. There are several approaches 
to generate atlas mappings with as few seams as possible or 
to find those seams that are visually least disturbing While 
these approaches are very useful to reduce artifacts, it cannot 
always be assumed that the virtual world model an algorithm 
has to work on is practically seamlessly textured.

1.2. Render to texture

Using a texture atlas involves two basic steps. The first one 
is to render the triangles of the model onto the texture atlas, 
to invoke vertex and pixel shaders that compute illumination 
data and output it to atlas texels. This is the render-to-atlas 
operation, which is simply performed by issuing a draw call 
with the original vertex and index buffers of the mesh. In the 
vertex shader, however, the vertices are displaced to their re
spective texture atlas coordinates, transforming the triangles 
to texture space. Theoretically, the pixel shaders should be 
invoked for all valuable texels o f the atlas, filling it with the

desired data. Having computed the atlas, it can be accessed 
from the pixel shaders of later passes, typically addressed by 
texture coordinates interpolated between vertices. The prob
lem this paper addresses is how to ensure that these texture 
reads will always address a texel for with the render-to-atlas 
has been performed and thus contains valid information.

1.3. TViangle rasterization

How to convert render primitives (points, line segments and 
polygons) to screen pixels effectively was exhaustively re
searched by pioneers of computer graphics*. Variant algo
rithms to render smooth anti-aliased edges, or to include pix
els only touching the area of primitives were also invented. 
However, only the most effective and clear-cut variant could 
make it to current incredibly fine-tuned graphics hardware. 
The issue of anti-aliasing is more effectively solved by the 
multi-sampling post-filtering approach. On the other hand, 
this specialization forces a need for workarounds when we 
need a different rasterization logic.

Figure 2: Hardware supported triangle rasterization Pix
els marked with circles are not coloured, even though they 
overlap with the triangle.

The general rule for rasterizing a triangle is to colour those 
pixels, whose centre is within the triangle (Figure 2. With ad
jacent triangles, this ensures there are no holes and no dou
bly coloured pixels in the image. However, if  we apply this 
rasterization rule when rendering to the texture atlas, there 
may be some texels whose centre is not within the triangle, 
but they are overlapping with it. The texture coordinates in 
these areas will address a texel which was not considered by 
the rasterization, and therefore the pixel shader computing 
the value that should be there was not invoked. These texels 
will appear as non-initialized or black blocks or stripes near 
the seams of the texture atlas. These cases can be avoided 
by very careful texturing, if the seams are all horizontal or 
vertical in texture space, but they will always appear in the

80



Szécsi /  Conservative rasterization

general case of slant-edged triangle mesh atlases. Further
more, if  the texture is read using linear filtering, these non- 
initialized values will influence and even larger area.

2. Previous work

Our objective is to find the missing texels along the seams 
and invoke the pixel shader for them. Figure 3 shows the 
desired result, with white pixels indicating seam texels that 
should also be rasterized. One way to do it would be to 
change the rasterization rules to colour all the pixels overlap
ping with the triangle, known as overestimated rasterization. 
This is not supported by the hardware, but can be simulated 
using the approach of Hasselgren et al.^, discussed in the 
Section 2.1. However, overestimated rasterization would ex
tend all triangles including those not near seams, resulting 
in multiple pixel shaders invoked for the same texel, causing 
both unnecessary overhead and artifacts.

Figure 3: A texture atlas. Gray texels are rasterized by con- 
ventional rasterization. White texels should also be com
puted.

A simple but neither effective nor accurate method is to 
filter the texture atlas, and copy valid neighbouring texel val
ues to non-initialized ones. This approach is really easy to 
implement, but it needs a full-screen rendering of the texture 
atlas, invoking a moderately expensive pixel shader using a 
number of texture reads for every texel. The overhead may 
be critical for a real-time algorithm. Furthermore, it is im
possible to plausibly decide which neighbour’s value is ac
tually valid for a texel without knowledge of the geometry. 
Usually the heuristics o f choosing the maximum is applied 
to keep visual artifacts low.

2.1. Overestimated triangle rasterization

Hasselgren et al.̂  have proposed a technique to conserva
tively rasterize separate triangles. While they explain that 
any GPU computation that decomposes its continuous prob
lem domain into discrete triangles may benefit from the tech
nique, they primarily consider applications like collision de
tection, where accurate rasterization is indeed a priority, but 
the shaders computing the rasterized colour are inexpen
sive and uniform. The difficult part o f such problems is the 
processing o f the results. Therefore, they are not concerned 
by adjacent triangles, where the area along the edge will be 
rasterized twice. For rendering complex computation results 
to atlases, however, this is a nuisance.

1 i
w

m '7!̂ y\

É i
■■

Figure 4: Overestimated rasterization^. More complex 
geometry is rendered to include centres o f overlapping pix
els.

Furthermore, quite heavy geometrical processing is re
quired, as triangles are converted into polygons containing 
áll texel centres that should be conservatively rasterized. Re
sulting polygons are defined by nine vertices, though some 
of them may be overlapping. The preprocessing cost is not 
critical compared to the time required to load the mesh 
model, and processing the geometry can not be avoided for 
an accurate solution anyway. However, it is not laudable that 
the triangle count will increase eightfold compared to the 
original mesh, possibly having some impact on performance. 
Realizing this flaw, the authors also devised an improved al
gorithm that creates a single overly extended triangle, but 
needs the modification of the pixel shaders to eliminate pix
els that should not really be rasterized. However, the only 
way to bail out from a pixel shader without any effect is to 
render a transparent value with proper blending. Therefore, 
this imposes limitations and transfers responsibilities to the 
computation algorithm using the rasterization.

81



Szécsi /  Conservative rasterization

3. The proposed algorithm

Looking at the texture atlas, we can realize that we actu
ally need to extend the contours of the charts o f adjacent 
triangles. Instead of exchanging all the triangles with more 
complex extended polygons, we only need to rasterize a few 
line segments along the seams. In order to do this, we need 
to identify those edges of the model mesh which are dupli
cated and placed on seams, and find out how to offset the 
line segments to augment the triangles just like conservative 
rasterization would.

3.1. Line rasterization

A line segment is rasterized according to the principles set 
by the DDA or the Bresanham* algorithms. Cases are sep
arated depending on whether the line segment is closer to 
the vertical or the horizontal direction. Then, in every line or 
every column respectively, that pixel is coloured the centre 
of which is closest to the line (Figure 5). We always mea
sure distances on the scan line or the pixel column, thus we 
can state that pixels whose centre is within the half-a-pixel 
distance form the line will be coloured.

Figure 5: Line segment rasterization^. The pixel whose cen
tre is nearest to the line is coloured is every column o f pixels.

Fortunately, albeit not by coincidence, this produces the 
exact same pattern as the one that appears at the edge of 
a rasterized triangle. In order to extend the triangle by one 
pixel, we can simply draw a line next to it. This line has to 
cover those pixels, the centre of which is not within the trian
gle, but is within the one pixel distance. As line rasterization 
will colour the pixels within half-a-pixel distance to the line, 
we have to offset the edge exactly by half a pixel. Therefore, 
the vertices serving as the endpoints of the line segment can 
be derived from the original triangle vertices by offsetting 
their texture coordinates by an amount corresponding to half

Figure 6: Line segment drawn to rasterize overlapping pix
els along edge.

a pixel, in the positive or negative « or v direction, depending 
on the orientation of the edge (Figure 6 ).

It is possible that two consecutive edges along the con
tour of a chart have different orientations, and the pixels of 
offseted edges do not cover the comer (Figure 7). To avoid 
missing these small areas, the edge should be extended by 
one pixel measured perpendicular to the offset direction at 
both ends.

Thus we acquire a supplemental set o f geometry made up 
of line segments. Whenever rendering the original geometry, 
we can also render the supplemental geometry as a vertex 
buffer describing line primitives. As all vertex data are de
rived from the original triangle vertices, and the texture co
ordinates have been manipulated, there is no need to change 
the shaders. Neither the vertex shader nor the pixel shader 
will experience any difference from what happens when ren
dering the original triangles.

3.2. Finding the seam edges

In order to assemble the geometry of offseted seam edges, 
we have to identify such edges in the mesh texture mapping. 
In mesh description file formats or data stmctures, seam ver
tices are already replaced by two identical vertices with dif
ferent texture coordinates, referenced by different triangles. 
Adjacency of triangles is usually not stored. However, we 
may build an adjacency graph based on the index buffer, 
disregarding the fact that duplicated edges actually would 
connect adjacent triangles. What we get is exactly the adja
cency graph of the mesh charts in the texture domain. For 
this graph it is easy to identify those triangles that miss a 
neighbour, and thus, the edges that are on the seams of the 
texture atlas. We also need the texture coordinates of the

82



Szécsi /  Conservative rasterization

Figure 7: Non-covered area may appear at comers where 
two differently aligned edges meet (above). Extending the 
edge line segment to cover corner pixels (below).

third vertex of the triangle, to be able to find the proper offset 
direction for the extra line segment.

4. Results

The implementation of the proposed method is straightfor
ward. It may be notable that the offset applied to edges de  ̂
pends on the resolution of the atlas. It is also required to have 
two texels wide free space between triangle charts to avoid 
rending them over each other. We have tested the method 
with meshes modelled with conventional tools using Maya, 
without taking any special care of placing texture coordi
nates. The texture atlas resolution was only 256 x  256 to 
emphasize artifacts (Figure 8 ).

We concluded that the artifacts (Figure 9) were com
pletely covered by texels rendered using the supplemen
tal line segments (Figure 10). However, the method failed

for degenerate triangles, where the texture coordinates con
tained insufficient of false information about the orientation 
of an edge. Therefore, it is required that the texturing of the 
mesh is uniformly mapped, and there are no zero or negative 
texture area triangles.

Extending the line segments to cover edges accomplishes 
its goal, but it renders a few texels superfluously. As we 
may consider texels rendered from triangles more valuable, 
it is beneficial to render the supplemental geometry before 
the real one. This will also suppress edges overlapping with 
other charts o f triangles, if the two pixels wide gap require
ment is violated by the model.

We have also integrated the new algorithm into an imple
mentation of the approximate ray tracing method, featuring 
soft shadows, multiple refractions and caustics all at high 
frame rates. Caustic and shadow impostors are rendered to 
the texture atlas. Formerly, the costly filtering method was 
used to eliminate the artifacts near texturing seams, sending 
frame rates down by up to 9% (48 FPS to 44 FPS on aver
age). Implementing the proposed conservative rasterization 
algorithm, the artifacts were removed without any measur
able performance impact. Figure 11 shows screenshots of 
the application with and without the new algorithm.

Figure 8 : The texture atlas o f the rocking horse mesh. White 
texels were generated by rasterizing the supplemental line 
segments.

5. Future work

When rendering to the atlas with blending enabled it is criti
cal not render to any texel more than once. This is respected 
by the edge offsetting algorithm, but if we extend the line 
segments to cover comers, we loose this property. Further 
processing of the geometry would be required to identify

83



Szécsi / Conservative rasterization

Figure 9: The rocking horse rendered with conventional ras
terization. Black areas have no valid values in the atlas.

Figure 10: The rocking horse rendered with conservative 
rasterization. Grey areas address texels computed by raster
izing supplemental line segments.

comer texels exactly, and rasterize them using a supplemen
tal vertex buffer of point primitives.

6 . Acicnowledgements

This work has been supported by OTKA (T042735), Ga- 
meTools FP6  (IST-2-004363) project, and the Spanish- 
Hungarian Fund (E-26/04).

We also wish to thank the authors of the approximate ray 
tracing method* for their invaluable help at showing the ap
plicability of our algorithm in an advanced lighting compu
tation framework.

References

1. Jack Bresenham. Algorithm for computer control of a 
digital plotter. IBM Systems Journal, 4{l):25-30,1965. 
2 ,4

2. Szabolcs Czuczor, László Szirmay-Kalos, László 
Szécsi, and László Neumann. Photon map gathering on 
the gpu. In Eurographics short presentations, Dublin, 
Ireland, 2005. Eurographics. 1

3. Jon Hasselgren, Tomas Akenine-Möller, and Lennart 
Ohlsson. Conservative rasterization. In Matt Pharr, ed
itor, GPUGems 2: Programming Techniques for High- 
Performance Graphics and General-Purpose Compu
tation, pages 677-690. Addison-Wesley, 2005. 3

84



ír

Szécsi /  Conservative rasterization

4. H. W. Jensen. Global illumination using photon maps. 
In Rendering Techniques '96, pages 21-30,1996. 1

5. Alla Sheffer and John C. Hart. Seamster: inconspicu
ous low-distortion texture seam layout. In VIS '02: Pro
ceedings of the conference on Visualization '02, pages 
291-298, Washington, DC, USA, 2002. IEEE Com
puter Society. 2

6 . László Szirmay-Kalos, Barnabás Aszódi, István 
Lazányi, and Mátyás Premecz. Approximate ray
tracing on the GPU with distance impostors. In 
Computer Graphics Forum, Proceedings o f Euro
graphics 2005, volume 24, Dublin, Ireland, 2005. 
Eurographics, Blackwell. 1 ,6 ,7

7. László Szirmay-Kalos and Balázs Benedek. Stochastic 
iteration for nondiffuse global illumination, pages 237- 
248, 2003. 1

8 . Bruce Walter, George Drettakis, and Steven Parker. 
Interactive rendering using the render cache. In 
D. Lischinski and G.W. Larson, editors. Rendering 
techniques '99 (Proceedings o f the 10th Eurographics 
Workshop on Rendering), volume 10, pages 235-246, 
New York, NY, Jun 1999. Springer-VerlagAVien. 1

Figure 11: Screenshots from the approximate ray tracing 
demo application^ with atlas rasterization artifacts (above), 
with the texels rendered by the supplemental edge geometry 
in lilac(middle), and with the proposed conservative raster
ization algorithm (below).

85



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Real-Time Indirect Illumination Gathering with Localized
Cube Maps

István Lazányi, László Szirmay-Kalos

Department of Control Engineering and Irrformation Technology, Budapest University of Technology, Hrmgary
Email: szirrtray@iitbme.hu

Abstract
This paper presents a fast approximation method to obtain the indirect diffuse or glossy reflection on a dynamic 
object, caused by a diffuse or a moderately glossy environment. Instead o f tracing rays to find the incoming 
illumination, we look up the indirect illumination from a cube map rendered from the reference point o f the object. 
However, to cope with the difference between the incoming illumination o f the reference point and o f the shaded 
point, we apply a correction that uses geometric information also stored in cube map texels. This geometric 
information is the distance between the reference point and the surface visible from a cube map texel. The method 
computes indirect illumination although approximately, but providing very pleasing visual quality. The method 
suits very well to the GPU architecture, and can render these effects interactively. The primary application area 
o f the proposed method is the introduction o f diffuse and specular interreflections in games.

1. Introduction

Final gathering, i.e. the computation of the reflection of the 
indirect illumination toward the eye, is one of the most time 
consuming steps of realistic rendering. According to the ren
dering equation, the reflected radiance of point x  in viewing 
direction <b can be expressed by the following integral

► a ): = J  y(a'))-/r(m ^—»3c—>m)-cos0 jrfü)',
ÍÍ'

where i i '  is the set of possible illumination directions, 
L'"(i <— is the incoming radiance arriving at point
X  from point y  visible in illumination direction o f ,  fr  is the 
BRDF, and 6 ;  is the angle between the surface normal at 
point X and the illumination direction.

The evaluation of this integral usually requires many sam
pling rays from each point visible in some pixel. Ray casting 
finds illumirmting points y  for sampling point x  at different 
directions (Figure 1), and the radiance o f these illumination 
points is inserted into a numerical quadrature approximating 
the rendering equation. In practical cases, number P of sam
ple points visible from the camera is over hundred thousands 
or millions, while number D of sample directions is about a 
hundred or a thousand to eliminate annoying sampUng arti
facts. In games and in real-time systems, rendering cannot

take more than a few tens of milliseconds. This time does 
not allow tracing P ■ D, i.e. a large number of rays.

illuminating

eye

Figure 1: Determining indirect illumirmtion with sampling 
rays.

To solve this complexity problem, we can exploit the fact 
that in games the dynamic objects are usually significantly 
smaller than their environment. Thus the global indirect il
lumination of the environment can be computed in a prepro
cessing phase, since it is not really affected by the smaller 
dynamic objects. On the other hand, when the indirect il
lumination of the dynamic objects is evaluated, their small 
size makes it possible to reuse illumination information ob
tained when shading other sample points. The first idea of 
this paper is to trace rays with the graphics hardware just

86

mailto:szirrtray@iitbme.hu


Lazányi, Szirmay-Kalos/Real-Time Indirect Illumination Gathering with Localized Cube Maps

Figure 2: The basic idea o f the proposed method: first virtual lights sampled from reference point o are identified, then these 
point lights are grouped into large area lights. The illumination o f a relatively small number o f area lights at shaded points x is 
computed without visibility tests.

from a single reference point being in the neighborhood of 
the dynamic object. Then the illumination points selected by 
these rays and their radiance are used not only for the refer
ence point, but for all visible points of the dynamic object. 
From a different point of view, tracing rays locates virtual 
light sources which illuminate the origin of these rays. We 
propose to find a collection of virtual light sources from a 
reference point, and then use these virtual light sources to 
illuminate all shaded points (Figure 2).

This approach has two advantages. On the one hand, in
stead of tracing P ■ D rays, we solve the rendering problem 
by tracing only D rays. On the other hand, these rays fonn 
a bundle meeting in the reference point and are regularly 
spaced. Such ray bundles can be very efficiently traced by 
the graphics hardware. On the other hand, this simplification 
also has disadvantages. Assuming the same set of illuminat
ing points visible from each sample point, self-shadowing 
effects are ignored. However, while shadows are crucial for 
direct lighting, shadows from indirect lighting are not so 
visually important. Thus the user or the gamer finds this 
simplification acceptable. Additionally, the used virtual light 
sources must be visible from the reference point. In concave 
environments, however, it may happen that an environment 
point is not visible from the reference point but may illu
minate the shaded point. However, indirect illumination is 
usually quite smooth, thus ignoring smaller parts of the po
tentially illuminating surfaces does not lead to noticeable er
rors.

Unfortunately, this simplification alone cannot allow real 
time frame rates. The evaluation of the reflected radiance 
at a sample point still requires the evaluation of the BRDF 
and the orientation angle, and the multiplication with the ra
diance of the illuminating point by D times. Although the 
number of rays traced to obtain indirect illumination is re
duced from P ■ D to D, but the illumination formula is still 
evaluated P ■ D times. These computations would still need 
too much time.

In order to further increase the rendering speed, we pro
pose to carry out as much computation globally for all sam

ple points, as possible. Clearly, this is again an approxima
tion, since the weighting of the radiance of each illumination 
point at each sample point is different. From mathematical 
point of view, we need to evaluate an integral of the product 
of the illumination and the local reflection for every sam
ple point. To allow global computation, the integral of these 
products is approximated by the product of the integrals of 
the illumination and the local reflection, thus the illumina
tion can be handled globally for all sample points.

Intuitively, global computation means that the sets of vir
tual light sources are replaced by larger homogeneous area 
light sources. Since the total area of these lights is assumed 
to be visible, the reflected radiance can be analytically eval
uated once for a whole set of virtual light sources.

The organization of this paper is as follows. First we re
view previous work that used global computations and data 
structures to make local reflections interactive. Then we dis
cuss when factoring of integrals is acceptable to simplify 
illumination computations in section 3. Section 4 presents 
the formulae of illumination reuse. Section 5 discusses im
plementation details, and finally results and conclusions are 
presented.

2. Previous Work

Environment mapping^ has been originally proposed to ren
der ideal mirrors in local illumination frameworks, then ex
tended to approximate general secondary rays without ex
pensive ray-tracing^' *■ '*. Environment mapping has also be
come a standard technique of image based lighting’’'^.

Classical environment mapping can also be applied for 
glossy and diffuse reflections as well. The usual trick is the 
convolution of the angular variation of the BRDF with the 
environment map during preprocessing*. This step enables 
us to determine the illumination of an arbitrarily oriented 
surface patch with a single environment map lookup during 
rendering.

A fundamental problem of this approach is that the gen
erated environment map correctly represents the direction

87



Lazányi, Szinnay-Kalos /  Real-Time Indirect Illumination Gathering with Localized Cube Maps

dependent illum ination only at a single point, the reference 
point of the object. For other points, the environm ent map is 
only an approximation, where the error depends on the ratio 
of the distances between the point o f interest and the ref
erence point, and between the point of interest and the sur
faces composing the environment, .■Accurate results can be 
expected if the distance of the point of interest from the ref
erence point is negligible com pared to the distance from ± e  
surrounding geometry. However, when the object size and 
the scale of its movements are comparable with the distance 
from the surrounding surface —  which is the typical situa
tion in games —  errors occur, which create the impression 
that the object is independent o f its illuminating environment 
(Figure 3).

Figure 3: Specular buddhti rendered with the classical en
vironment mapping method (left) and a reference image 
(right). The reference point for the environment mapping is 
located in the middle o f the room. Although the buddha’s 
head is very close to the green ceiling, thus it is expected to 
be greenish, the classical environment mapping is unable to 
cope with this expectation.

One possible solution is to use m ultiple environment 
maps. For example, Greger et al.-* calculate and store the di
rection dependent illumination in the vertices o f a bi-level 
gnd subdividing the object scene. During run-time, irra- 
diance values o f  an arbitrary point are calculated by tri- 
linearly interpolating the values obtained from  the neighbor
ing grid vertices. They reported good results even with sur
prisingly coarse subdivisions. This means that the smooth 
irradiance function is especially suitable for interpolation. 
While Greger et al. used a precom puted radiosity solution 
to initialize the data structures. Mantiuk et al.'’ calculated 
these values during run-time using an iterative algorithm that 
simulates the m ultiple bounces of light. For each bounce of 
light, cube maps are used to record the incoming radiance 
at the grid vertices. Then, irradiance values are calculated 
and stored at these grid vertices using the spherical har
monics representation*. Then, the scene is rendered again 
using tn-linearly interpolated irradiance values. Using this

progressive approach, they  could achieve global illumina
tion effects in dynamic scenes with dynamic light sources 
at nearly-interactive fram e rates.

Instead of working w ith  multiple environment maps, an
other possible approach is to use a single environment map 
■■smartly", so that it provides different illumination infor
mation for every point, based on the relative location from 
the reference point. At a  given time, we have just a single 
■■global” environment m ap, but make “localized” illumina
tion lookups. GPU based localized image based lighting has 
been suggested by B jo rk e ', where a proxy geometry (e.g. a 
sphere or a cube) of th e  environment is intersected by the 
reflection ray to obtain the visible point. The Approximate 
Ray-Tracing approach'®, on the other hand, stores the dis
tance values between th e  reference point and the environ
ment and applies an iterative process to identify the real hit 
point of those rays that are not originated in the reference 
point.

3. Radiance computation in the new algorithm

Let us assume that we use a single environment map that 
records illumination inform ation for reference point o. Our 
goal is to reuse this illum ination information for other nearby 
points as well. To do so , we use approximations that will 
allow us to factor out those components from the rendering 
equation, which strongly depend on actual point ,t.

In order to estimate the integral of the rendering equa
tion, directional domain i l ' is decomposed to solid angles
Atü'j.i = 1.......N. where the radiance is roughly uniform in
each domain. After decomposing the directional domain, the 
reflected radiance is expressed as the following sum:

L''(x —>ta) =

,v -
^  J  *— -/ r(0i ' —► T —> m) cosOy do)'.

A(U.-

Let us consider a single terni o f this sum  representing the 
radiance reflected from Acoi. If Acn' is small, then L ‘"  has 
small variation. Furtherm ore, considering the illumination 
and reflectance as random  variables, the variation of the illu
mination depends on the surface of the illuminating points, 
while reflectance /r((o ' —► .f —* tb) ■ cos 0 j depends on the re
ceiver point, thus they can  be suppo.sed to be independent. 
The expected value of the products o f independent random 
variables equals to the product of the expected values, thus 
we can use the following approximation:

//'(.?• (Ú ■ fr{ t£ >  —» . ? —* ci)) ■ CO S0 J  d m  ‘

Aai)

-Ay,(ACu'))- J  f r ( m '  ■ 

Süí!
■.f —• Cú) -005 0 ^ 1̂ (1)̂  ( 1)

r

88



Lazányi, Szirmay-Kalos /  Real-Time Indirect liiumination Gathering with Localized Cube Maps

where 2Lu, is the average incoming radiance coining from 
surface Ay,- seen at solid angle AtoJ:

Li„{x <- Ayi(Ati),')) =  ^  ■ J L'"{x*-  5?(ro')) dm'.
' Ao),'

The average incoming radiance can also be expressed with 
the properties of the surface visible from x  at the given solid 
angle. Let us denote the center of this area by y,-. The visible 
area and the solid angle have the following relationship:

Ay,- ■ cosfly,^

where is the angle between the normal vector at y,- and 
the direction from y,- to x.

Expressing average incoming radiance Lin with surface 
area Ay,-, we obtain:

lin{xAo -̂) fa Lin{x« -  Ay,-) = -^^ -  J L {y-^  dy.
Ay,

Aco; =

The second factor of equation 1 is the reflectivity integral, 
which is also expressed as product of the average integrand 
and the size o f the integration domain:

/ —*x-*Si)-cos  0jf dm' — a(Am'- —> Í  —> 2») ■ Am'-
Amf 

where

a(Ami—f X m )  =  ■ J fr (m '—* x —* m) • cosQy dm'
‘ Am;

is the average reflectivity from solid angle Am'-.

The average reflectivity is evaluated using only one direc
tional sample pointing from y,- toward x, that is, the
integrand is assumed to be constant in domain Acu,-:

a(Ami -♦  3c —» Si) fa fr{my^-4x - ^ x ^ S t ) -  COS0y. 

Clearly, such approximation is acceptable for diffuse and

moderately glossy materials, but fails for highly specular 
surfaces.

Putting the results of the average incoming radiance and 
the reflectivity formula together, the reflected radiance can 
be approximately expressed as

L'’(3c -+ m) I
N

■■ILi,
i= l

(x <— Ay,-) • a(Ami - > x —*m)-Amj.

(2)

4. Reusing illumination information
Let us find reference point ö  and identify elementary sur
faces Ay,- which may illuminate the reference point, and eval
uate incoming radiance Loi(o Ay,-). To do this, we render 
the scene from reference pwint o onto the six sides of a cube. 
In each pixel of these images we store the radiance of the 
visible point and the distance fix>m the reference point. The 
pixels of the cube map thus store the radiance and also en
code the position of small indirect lights.

To simplify the indirect illumination calculation, these 
small lights are clustered into larger area light sources, which 
corresponds to downsampling the cube maps. A pixel of the 
lower resolution cube map is computed as the average of 
the included higher resolution pixels. Note that both radi
ance and distance values are averaged, thus finally we have 
larger lights having the average radiance of the small lights 
and placed at their average position. The total area corre
sponding to a pixel of a lower resolution cube map will be 
elementary surface Ay,-.

According to equation 2 the reflected radiance at the ref
erence point is:

R
L'{o ^  c5) Ri ^  Li„{d <— Ay,-) • a(AcO( —»S —► m) • Ato,-.

i=l

Let us now consider another point x  close to the reference 
point o and evaluate a similar integral for point 3f while mak
ing exactly the same assumption on the surface radiance, i.e. 
it is constant in areas Ay,-:

Li{x —+ w) «  ^ Lin{x <— Ay,-) -a(Ami - * x —*m)- Am*. 
i=l

Solid angles Acô  and Am,* can be expressed as

, Ay,--cos0y,,g 
Aco,- — _ ,2  J

lo - y ip

Ay,--COS0y,^
I-* ^ 17.l- i-T ir

Assume that the environment surface is not very close 
compared to the distances of the reference and shaded 
points, thus the angles between the normal vector at y,- and 
reflection vectors from o and from 3c are similar (cos0y,^ «  
cos0y, 5 ). In this case, we can establish the following rela
tionship between Aco,* and AcoJ:

|o - y iPAco,* »  Aô - -
IX -y iF '

89



Lazányi, Szirmay-Kalos / Real-Time Indirect Illumination Gathering with Localized Cube Maps

On the other hand, supposing diifuse or moderately spec
ular environment, receiving point x  can be translated a little 
while Lin (3c Ay>) remains approximately the same, mak
ing Lin independent of the receiving point 3c and allowing its 
global computation, that is

Li„{x<r- Ay/) R3 Li„(o <- Ay/).

Using these considerations, the reflected radiance at point 
3c can be expressed as

L'’(x —► S»)«  Y  L/„ (x <— Ay/) ■ íí(AC0/ —► x —> S) • Aco/ • ^ .
|jc -y .P

Note that we do not have to know anything about the orien
tation of the environment surface Ay,-. Those factors that are 
independent of point x  can be pre-computed in

L| =Lin(o* Ay/) • AcO/• |o —y/| ,

and stored in the texels of the environment map. Then the 
summation of

L̂ (3c (0 ) «  X  (3 )

is executed on-the-fly for each visible point 3c.

5. Implementation

The proposed algorithm first computes an environment cube 
map from the reference point and stores the radiance and 
distance values of the points visible in its pixels. We usually 
generate 6  x 256 x 256 pixel resolution cube maps. Then the 
cube map is downsampled to have 4 x 4 (or 2 x 2) pixel res
olution faces. The resulting low-resolution environment map 
shall be called LREnvMap and its resolution will be denoted 
by M. To keep the presented shader code as simple as possi
ble, we will omit the precomputation of L f and calculate the 
value of the reflected radiance entirely on-the-fly:

fIoat4 ReflRadPS ( 
floats N  
floats V 
floats pos

T E X C O O R D O , 
TEXCOORDl, 
TEXCOORD2 ) C O L O R 0

{
float4 L r  = 0;
V  = n o r m a l i z e ( V  ); normalize! N  );

for (int X  = 0; X  < M; x++) // for each texel 
for (int y  = 0; y  < M; y++) {

float2 t = f l o a t 2 ( (x+0.5 f )/M, (y+0.5f)/M); 
float2 p = 2*t-l; // -1..1

Lr += Contrib(floats(p.x,p.y, 1), pos, N ) ; 
Lr += C o n t r i b ( f l o a t S ( p . x , p . y , -1), pos, N ) ; 
Lr += Contrib(floats(p.x, l,p.y), pos, N ) ; 
I I  + similarly for the 3 remaining sides

)
return intens;

The C o n tr ib  function calculates the contribution of a sin
gle texel in LREnvMap to the illumination of the shaded 
point. Arguments p o s  and N are the position and the surface 
normal of the shaded point, respectively. Assuming difriise 
BRDF the implementation is as follows:

float4 Contrib(floats L,
floats pos, 
floats N) {

float 1 = l e n g t h ( L ) ; L = normalize(L) ; 
float dw_i = 4.0 / (M*M) / (1*1*1);

float4 Lin = texCUBE(LRCubeMap, L ) ; 
float a = )c_d * raax(dot (N, L) , 0) ;
float4 Lr = Lin * a * dw_i;

float r = texCUBE(LRCubeMap, L).a; 
float r_= length(pos - L * r ) ;
Lr *= (r*r) / (r_*r_); // localization
return Lr;

}
The solid angle subtended by the given texel can be de
scribed as:

AA • cos 0A(0 / =
\L?

where AA is the area of the texel, AA ■ cos0 is the area of 
the texel visible from the reference point, and L is a vector 
pointing to the texel center. Assuming that the largest com
ponent of vector L is equal to 1 (as seen in the R eflR adP S  
function), the solid angle becomes

{ I j M fbdSSi =

since the cosine value describing the orientation of the texel 
equals to 1 /|L |.

6. Results

Let us consider a simple environment consisting of a cubic 
room with a divider face in it (Figure 5). Assuming that the 
reference point for the environment mapping is located in 
the middle of the room, the original and the downsampled 
environment maps are shown in Figures 6  and 7.

The object to be indirectly illuminated is the bunny, the 
dragon, and the happy buddha, respectively. Each of these 
models consists of approximately 50-60 thousand triangles. 
Frame rates were measured in 700 x  700 windowed mode 
on an NV6 8 (X)GT graphics card and P4/3GHz CPU.

The first set of pictures (Figure 8 ) shows a diffuse bunny 
inside the cubic room. The first column is rendered using 
the traditional environment mapping technique for diffuse 
materials where a precalculated convolution enables us to 
determine the irradiance at the reference point with a single 
lookup. Clearly, these precalculated values cannot deal with 
the movement of the object: the bunny looks similar at any 
position of the room. The other columns show the results

90



Lazányi, Szinnay-Kalos / Real- Time Indirect Illumination Gathering with Localized Cube Maps

Figure 5: A bunny in a simple environment (stde and top view).

of our method using different sized cube maps. Note that 
even with an extremely low resolution (2 x 2) we get images 
similar to the large-resolution reference.

The second set of pictures (Figure 9) shows a specular 
dragon inside a room. The first column presents the tradi
tional environment mapping technique while the other three 
columns present our localized algorithm. Similarly to the 
diffuse case, even cube map resolution of 2 x 2 produced 
more pleasing results than the classical technique.

7. Conclusions

This paper presented a localization method for comput
ing diffuse and glossy reflections of the incoming radiance 
stored in environment maps. The localization uses the dis
tance values stored m the environment map texels. The pre
sented method runs in real-time and provides visually pleas
ing results.

Acknowledgements

This work has been supported by OTKA (T042735) and Ga- 
meTools FP6 (lST-2-004363) project.

References

1. K. Bjorke. Image-based lighting. In R. Fernando, edi
tor, GPU Gems, pages 307-322. NVidia, 2004.

2. J. F. Blinn and M. E, Newell. Texture and reflection 
in computer generated images. Communications of the 
ACM. 19(10):542-547, 1976.

Figure 6: Large-resolution cube map taken from the refer
ence point and its downsampled version.

Figure 7: .Alpha channel of the large-resolution cube map 
stores the distances from the illuminating environment. The 
downsampled version contaims averaged distances.

91



Lazányi, Szirnuiy-Kaios/  Real-Time Indirect llluminulioit Gathering with Localized Cube Maps

classical 2x2 cube map 
75 FPS

4x4 cube map 
20 FPS

16x16 cube map as a reference 
2 FPS

Figure 8: Diffuse bunny rendered with the classical environment mapping (left column) and with our proposed algorithm.

3. P, Debevec. Rendering synthetic objects into real 
• scenes: Bridging traditional and image-based graphics

with global illumination and high dynamic range pho
tography. \nSIGGRAPH '98, pages 189-198, 1998.

4. Greger G., P. Shirley, P. Hubbard, and D. Greenberg. 
The iiradiance volume. IEEE Computer Graphics and 
Applications, 18(2):32—43, 1998,

-“i, N. Greene. Environment mapping and other applica
tions of world projections. IEEE Computer Graphics 
and Applications, 6(ll):21-29, 1984.

6. R. Marniuk, S. Pattanaik, and K. Myszkowski. Cube- 
map data structure for interactive global illununation 
computation in dynamic diffuse environments. In Inter
national Conference on Computer Vision and Graphics, 
pages 530-538, 2002,

7. G, S. Miller and C. R. Hoffman. Illumination and re
flection maps: Simulated objects in simulated and real 
environment. In SIGGRAPH '84, 1984.

8. R. Ramamoorthi and P. Hanrahan. .-kn efficient rep

resentation for irrandiance environment maps. SIG
GRAPH 2001, pages 497-500, 2001.

9. E. Reinhard, L. U. Tijssen, and W. Jansen. Environ
ment mapping for efficient sampling of the diffuse in- 
terreflection. In Photorealistic Rendering Techniques, 
pages 410-422. Springer, 1994,

10. L. Szirmay-Kalos, B. Aszódi, I. Lazányi, and P. Má
tyás. Approximate ray-tracing on the GPU with dis
tance impostors. Computer Graphics Forum, 24(3), 
2005.

11. A. Wilkie. Photon Tracing for Complex Environments. 
PhD thesis. Institute of Computer Graphics, Vienna 
University of Technology, 2001.

92



Lazányi, Szirmay-Kalos /  Real-Time Indirect Illumination Gathering with Localized Cube Maps

classical 2x2 cube map 
21 FPS

4x4 cube map 
7 FPS

16x 16 cube map as a reference 
1 FPS

Figure 9: Specular dragon (shininess = 5).

classical 2x2 cube map 
22 FPS

4x4 cube map 
6 FPS

Figure 10: Specular buddha ishininess =  57

16x16 cube map as a reference 
1 FPS

93



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Scalable Rasterizer Unit

P. Szántó and B. Fehér

Department o f Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
Modeling the light-surface interaction in real time 3D applications becomes more and more complex, as 
users require more lifelike images. Segmented screen rendering offers a viable solution to minimize the 
unnecessary work done in traditional rendering architectures. However, increasing the efficiency o f the 
rendering pipeline also increases the required hardware resources for the 3D rendering unit. This paper 
presents a modular, scalable rasterizer architecture, which makes it appropriate in a wide range o f 
applications.

Categories and Subject Descriptors: B.2.4 High-Speed Arithmetic, Algorithms

1. Introduction

In real-time graphics rendering two approaches are 
prevalent. Immediate Mode Rendering (IMR) renders the 
scene triangle by triangle; rasterization and shading o f a 
triangle immediately starts after it has been transformed into 
screen space. Contrary to this. Deferred Rendering (DR) 
waits for all triangles to be transformed before beginning the 
per-pixel operations. The latter method has two main 
advantages.

First, it guarantees maximum efficiency when computing the 
output color values (the shading part o f the rendering 
process, which clearly becomes the most time consuming), 
as only the truly visible values are shaded -  unlike IMRs, 
where pixels not visible on the final image may be also 
processed. This is possible by first doing the visibility test, 
and deferring the rasterization process, so it only starts when 
the whole frame is analyzed and the visible objects are 
determined for every screen pixel.

Second, it allows using on-chip memory for the Depth-, 
Stencil- and Frame Buffer, thus reducing external bandwidth 
requirements, lowering cost and power consumption. It must 
be noted, that theoretically IMRs can also use on-chip 
buffers, but these buffers have to be the same size as the 
final, rendered image -  which currently caimot be

manufactured. The ability to segment the screen into small 
rectangles and then render these rectangles as “independent, 
small screens” allows small, implementable buffers to be 
used.

The DR rendering process is just a little different from the 
IMR one:

for every triangle in the given frame{
transform the triangle into screen space 
find overlapped segments

}
for every segment on the screen{ 

for every pixel in the segment{ 
do visibility test

}
for every pixel in the segmentf 

compute output color values
}

}
The first part o f the article reviews different segmenting 
strategies and presents hardware architecture for segmenting. 
The second part presents a modular Depth/Stencil Unit.

2. Segmentation

Basically, there are three possibilities when deciding about 
the segmentation strategy [1 ].

94



Szántó et a l / Scalable Raslerizer Unit

The simplest solution is to process all triangles in all 
segments, therefore completely skipping the segmentation 
part (SGI had architectures which work this way). This 
method has clear disadvantages, as the effective depth/stencil 
fill rate is especially decreased due to the unnecessary work 
done during the visibility test. On the other side, the 
hardware architecture is simplified, and there is no need to 
store a triangle list for the segments.

Bounding box method uses the bounding box o f the triangles 
to define the overlapped segments. Even this simple method 
can increase efficiency considerably -  especially with small 
triangles - ,  however there are cases when a lot of 
unnecessary segments are marked as overlapped. Figure 1 
shows such a case. There are known architectures doing 
software segmenting this way, for example Intel Extreme 
Graphics [2] or Microsoft Talisman [3]. Hardware solutions 
are rarer, the PixelFlow [4] is surely employing bounding 
box method and benchmark results indicate that the only 
commercial deferred tenderer (PowerVR Kyro [5]) also 
prefers this way.

The most efficient method is exact segmenting, when only 
segments having at least one pixel overlapped with the 
triangle are marked. The disadvantage is the required 
hardware resources to implement the functionality.

Figure 1. Overlapped segments using bounding box and 
exact segmenting

The following section shows the details o f a hardware 
bounding box segmenting unit, and compares it with an 
exact segmenting solution, detailed in [6 ].

2.1 Bounding Box Segmenting Unit

Just as the Exact Segmenting Unit (ESU), the bounding box 
veision (BBSU) consist o f three main parts: the first part 
(Input Pipeline) computes the necessary input values for the 
main processing unit (Segment Generator), while the third 
part (Address Generator) handles communication with the 
external memory. To -  possibly -  increase efficiency, the 
unit supports programmable segment size, which can be set 
as an application specific parameter, or can be even adjusted 
adiq)tively, based on the statistics of a previous frame(s). 
Although selecting an overall appropriate segment size was 
already discussed in [7], the effects o f variable segment size 
require further research to be correctly analyzed as there is 
no known academic or commercial architecture supporting 
this feature.

2.1.1 Input Pipeline

The first unit receives screen space vertex data (x, y  
coordinates) from the transformation part and, as a first step, 
generates primitives -  triangles -  from them. For primitive

without additional requirements, while for triangle fans the 
shar
times (thus, generating a triangle strip from the fan). The 
architecture o f the Input Pipeline is shown on Figure 2.

For load balancing with the transformation part, vertex data 
is immediately written into a small, 64 word deep FIFO. The 
FIFO is followed by two 3-
input every clock cycle. After reading the appropriate 
number of vertices from the FIFO (eg. one for triangle strip, 
three for triangle list), the sorters output the minimal and 
maximal x  and y  coordinates o f  the current triangle (which 
define the bounding box with high precision). These, values

vertical resolution o f the segment, generating the comer 
segments of the bounding box. To limit resource usage, only

clock cycles to generate the four new values.

Figure 2. Input Pipeline

2.1.2 Segment Generator

The Segment Generator itself is very simple: it consists of 
two adders: one for incrementing the segment x  coordinate, 
and one for incrementing the segment y  coordinate. In the 
current implementation, the Segment Generator generates 
new (SX, SY) segment coordinate pairs every clock cycle, 
but with multiple adders it can be easily parallelized further

than the average maximum{bounding box height, width}).

2.1.3 Address Generator

The Address Generator builds a chained list for every 
segment. The list itself consists o f 32-word blocks, from 
which 31 words are pointers to triangles, while the 32“̂  word 
is a pointer to the next 32 word block. The hardware

which was presented in details in [6 ].

2.1.4 Bounding Box vs. Exact Segmenting

Table 1. shows the main advantage o f the BBSU, namely 
resource requirement.

95



Szánló e lü l /Scalable Rasterizer Unit

AU in all, the BBSU requires about quarter as many FPGA 
resources as the ESU. Efficiency is more complex to answer, 
as it largely depends on the frame to be rendered, not to 
mention that it is not enough to analyze the Segmenting Unit 
alone, but together with the Hidden Surface Removal Unit.

FF LUT MUL RAM
Input
Pipeline

ESU 1 1 0 0 1 2 0 0 4 -
BBSU 310 540 2 -

Segment
Generator

ESU 900 2800 - -
BBSU 40 50 - -

Address Gen. 270 380 1 4
ALL ESU 2270 4380 5 4

BBSU 620 970 3 4
BBSU/ESU, % 27.3 2 2 .1 60 1 0 0

If average triangle size is comparable to the segment size 
(eg. one triangle overlaps only 3-4 segments) the BBSU can 
be just as effective as the ESU. As triangle size increases, 
ESU becomes at least twice as effective. If the scene 
contains a lot o f triangles with high aspect ratio (just as the 
one on Figure 1), the efficiency advantage o f the ESU 
version increases further. To fully answer this question, real- 
world applications should be analyzed, as widely accepted 
fill rate tests (such as 3DMark [8 ]) use full screen quads -  in 
this case the ESU is twice as effective as the BBSU.

3. Hidden Surface Removal Unit

The Hidden Surface Removal Unit (HSRU) consists o f two 
main parts: a Vertex Processing Unit (VPU), which receives 
vertex data and computes all the necessary values for the 
next part, which does overlapping determination, depth 
buffering and stencil buffering.

Figure 3. HSR Unit

The latter block is made up from several, similar processing 
elements (HSR Cells), as Figure 3 shows. The A c tio n  o f 
the adders between the two blocks will be discussed later.

Depending on the specified segment size, and the number o f 
HSR Cells, each o f them works on one or more segment

lines. To correctly identify covered pixels and interpolate the 
depth values, the cells require initial values and delta values, 
which are generated by the VPU.

3.1 Vertex Processing Unit

Overlapping determination is based on variables generated 
from the explicit equation o f the triangles sides:

S j ( x , y )  = ( x i ~ x ) *  A y - ( y i ~ y ) * A x  (1)
where X; and y, are points on the side. Ax and Ay are the

side. During interpolation, S/x.y) is incremented or

through the pixels assigned to them. Covering is determined 
using the sign of the three 5  variables {Sq, Si, Si represents 
the three variables for the three sides):

(2)(sign(So(x,y)) XOR sign(S ,(x .y))) AND 
sign((S,(x,y)) XOR sign(5^ (x.y))
All in all, for the three sides the following calculations are 
required:

■yi)-

■y2)~ (3)

^ o (  Xstrt >y stri)  (^str t X Q ) * ( y Q -

- ( y s m - y o ) * ( x o - x , )

Si(x,tr,,ysirt )  = ( x , M - ^ o ) * ( y o -  
- ( y „ l r l - y o ) * ( X o - X 2 )
S 2 (X s tr t-y s lr l)  = (Xsir, - X , ) * ( y , - y 2 ) -  

- ( y s t r t - y i ) * ( x i - x 2 )
In (Eq. 3) x^^ and y^tn are the coordinates o f the starting 
pixel for the HSR Cells (without anti aliasing, the top-left 
pixel o f the processed segment).

Initial depth values and incremental values are generated 
using the following equations:

(4)

^ (XslrtXstrt)  * ̂ strt ^ z  * y$trt ~ ^^z

= ( ~ ) * X „ „  + ( - j ^ ) * y s , r ,  + ( - ^ )  =
^2

=( - ^ )  * ( Xsiri - x , ) + ( - ^ )  * ( ystrt - y t ) + ^ i

The coefficients in (Eq. 4) are computed using the depth 
values defined at the three vertices and the plane equation of 
the triangle.

(5)

Az = ( z i - z 2 ) * ( y i - y o ) - ( y i - y 2 ) * ( ^ i ~ ^ o )  
B i = ( x i - X 2 ) * ( z , - z o ) - ( z i ~ Z 2 ) * ( x i - X o )

C ,  = ( x , - x 2 ) * ( y , - y o ) - ( y i - y 2 ) * ( x ] - x o )

D, = - ( A ^ * X i + B ^ * y j + C ^ * Z ] )
In the hardware realization clipped screen space x, y  
coordinates are 16 bit fixed point values, while vertex depth
(z)
computations, the VPU uses these formats, but at the last 
step z(Xstr,,ysin), and F) are converted to 24 bit fixed point 
format, preserving only the fractional part o f the generated

96



Szántó et al / Scalable Rasterizer Unit

depth values (the transformation o f triangles from 3D world 
space to screen space maps depth values to [0, 1] range).

3.1.1 Hardware Architecture

Because o f the architecture o f the HSR Cells, the above 
computations can be done in 16 clock cycles without 
limiting performance. Therefore, the trivial dataflow 
implementation is not the best option, as it requires too many 
resourees, while it is needlessly fast.

A programmable solution not only requires fewer resources, 
but it is also more flexible, which -  together with the HSR 
Cell architecture -  allows flexible anti aliasing 
implementation (more on this later). Figure 4 shows the 
architecture o f the arithmetic unit.

Figure 4. Vertex Processing Unit

The inputs o f the VPU are the vertiees’ x, y  and z coordinates 
and the screen coordinates o f the top-left pixel in the 
processed segment.

The whole processing unit consists o f two, almost separated 
portions. The upper part on Figure 4 is able to compute the 
required values for covering determination, while the lower 
part is responsible for the depth related computations.

The first units in the overlapping determination part are 
small, dual-ported memories to store the three x  and y  
coordinate pairs o f the currently processed triangle. The two 
memories fed a 16 bit adder/subtractor which has write 
enable signals at the input registers -  its function is to 
compute the delta coordinate values in Eq. 3. The output is 
routed to a multiplier (which also has write enable signals at 
the input registers) to compute the partial products in Eq. 3 -  
to increase flexibility, these values are stored in a small 
memory. The final 32 bit adder can calculate the final edge 
variables (So, S,, S2), which -  together with the delta values -  
are the input values for the covering determination part of 
the HSR Cells.

The depth related part supports mixed formats; in order to 
reduce latency, the subtraction o f the screen coordinates are 
done using fixed point arithmetic, but all other calculations 
are performed using the 24 bit floating point format o f the 
vertex depth values. Accordingly, the fix point adder which

generates the eoordinate differences is followed by a fixed 
point to floating point converter before connecting to the 
floating point multiplier. The coordinate differences are

differences), generating the partial products of A^, and Q.
The output of the multiplier is routed to the input memories 
of the adder to be able to compute the A^, B„ results. The 
A^, őj results are then multiplied with the reciprocal o f the Q  
value (hence the multiplier can use the result o f the adder 
and the reciprocal unit), generating the final E) and Fj 
values. To generate the initial depth value, and are 
multiplied with the starting x  and y  eoordinates, and then 
these results are added together with the z; 
value. To avoid the operand cancellation when adding 
together these values (that is when two large, almost equal 
values with different sign hide the impact of a small third 
operand, but then eancels each other), the adder has three 
inputs, and it always generates eorrect results; however, the 
third input is only used when the initial depth value is 
computed, otherwise it is set to zero (the shift register at the 
input allows the appropriate delay to be applied to z; 
compensate for the latency o f the computations).

the read address of the memories; the select signals o f the 
multiplexers; the add/subtract control signals and the write 
enable signals of the different units. Scheduling analysis 
shown that the depth computation has nearly 48 clock 
latency (obviously, this depends on the program), but it is 
able to start processing a new triangle every 16* cloek cycle. 
Of course, when programmed differently, latency and 
performance may differ, the above reported results are valid 
for an actual program which can handle anti aliasing.

As the different arithmetic units have different latencies 
which are not hidden from the programmer in any way, 
programming the unit is not the easiest task. However, the 
creation of simple compiler (data flow compiler) is 
obviously possible.

3.2 HSR Cell

The unit doing the actual hidden surface removal is made up 
from a number of similar cells. Every cell has its own buffer 
(storing depth, stencil and triangle pointer), and some 
segment lines assigned to it; using N  cells, every n* line is 
processed by the n* cell (for example, with 8 cells and 
32*16 resolution segment, the I'" and 9* line is processed by 
the 1̂  cell, the 2"'* and 10* lines are processed by the l “ cell, 
and so on). After processing one o f the associated lines, the

interpolate in the y  direction. Irrespectively o f the number of

However, this makes scheduling predieta
the VRU can have 16 clock cycles to generate new input data
for the cells.

97



Szántó el a l / Scalable Rasterizer Unit

When the VPU has finished generating the new values for 
the starting pixel, the 1“’ cell loads these data. At the same 
time the input data is modified for the next cell (stepping one 
line in the y  direction), which loads them one clock cycle 
later compared to the 1*‘ cell. This method only requires one 
input at any time, so only one adder per variable is needed to 
interpolate them in the y  direction (these are the adders on 
Figure 3).

A cell itself consists o f three distinct units. Covering 
determination identifies if  a pixel is inside the processed 
triangle -  and allows the write enable signal o f the buffers to 
become active.

3.2.1 Covering Unit

After loading the initial values of the three Sj variables, a 
HSR Cell decrements this value with Ay (see Eq. 2-3) every 
clock cycle. The decision about overlapping is done using 
Eq. 2.

3.2.2 Depth Unit ,

The Depth Unit reads the depth buffer, compares the read 
value with the interpolated one (using the set comparison 
function) and in case the comparison returns true, allows the 
write back to the depth buffer. The pipelined architecture is 
shown on Figure 5, gray blocks represent registers, and 
white blocks are logic fiuictions.

Figure 5. Depth Unit

This unit supports all possible comparison functions (Z Func 
-  always, never, less, less-or-equal, equal, greater-or-equal.

greater). The Depth Unit has two processing modes: opaque 
and transparent.

In opaque mode, two pixels are processed per clock cycle, 
the two Z Inc registers stores the same delta value and the 
depth functions are also similar.

Transparent, multi pass mode can be activated after all 
opaque triangles are processed. In this mode, the unit can 
process one pixel per clock cycle. In every pass, the 
transparent triangle which is farthest from the camera, but 
closer than the already processed triangles is determined for 
every pixel. This is done with two comparisons and using 
two depth buffer location: one location stores the depth value 
of the already processed (shaded) triangle, while the other is 
the working buffer. The former is compared with the 
interpolated depth value using less comparison function, 
while the latter is compared using larger comparison 
function. After finishing a pass, the two buffer locations 
changes function.

3.2.3 Stencil Unit

To keep up with the Depth Unit, the Stencil Unit also 
supports two stencil tests per system clock using 8 bit stencil 
values. As these two units share the same memory, the 
pipeline latency is also the same. Just as the Covering- and 
Depth Unit, it also gen

value, write mask value, comparison function and stencil 
operation. The comparison function has the same options 
which were listed for the Depth Unit, while the stencil 
operation can be set for “stencil test fails”, “stencil test 
passes and depth test fails” and “stencil test passes and depth 
test passes” cases. Available operations are: keep previous 
value, set to zero, replace with reference value, increment 
(with or without saturation), decrement (with or without 
saturation) and invert.

4. Arbitrary Anti Aliasing

The programmable Vertex Processing Unit together with the 
programmable segment size allows implementing anti 
aliasing (AA) with arbitrary number o f samples and arbitrary 
sample positions.

Without AA, the andyj,r( coordinates in Eq. 3 and Eq. 4 
are set to the screen space coordinates o f the top-left segment 
pixel, and the segment size is set to the real (pixel) resolution 
of the segment. The VPU processes a triangle once, 
computing the required delta values and the initial values for 
the top-left segment pixel. The HSR Cells use these values to 
determine covering and generate depth values at pixel 
centers.

Setting for example two-times AA requires only minor 
programming changes. Let define sampling positions as 
shown on Figure 6. The desired effect can be achieved by 
setting the vertical resolution of the segment to twice of the 
real size, and then modifying only the and y,o., values. 
First, the VPU computes the same delta values as without

98



Szántó et al / Scalable Rasterizer Unit

AA, but generates the start values using {top left pixel x  + 
pix_size/4) as Xs,„ and (top left pixel y  -  pix_size/4) as 
As long as the HSR Cells process the first sample positions, 
the VPU modifies to (top left pixel x -  pix_size/4) and 
Vsiri to (.lop left pixel + pixjsize/4).

Figure 6. AA sampling pattern 
Using this method, any number of AA samples can be 
generated within a pixel, as long as the precision o f the 
coordinate computation allows it, and there is enough buffer 
memory. For example, a 32*16 resolution segment allows 
64-times AA to be used. Obviously, depth/stencil buffering 
fill rate decreases linearly as the number o f samples 
increases. It must be noted that the presented architecture 
only deals with oversampled covering determination and 
depth testing. To generate AA-ed images, the other units 
(especially the shader unit) have to support this arbitrary 
mode. Actually, the type of AA (multisampling -  only object 
edges are filtered; supersampling -  the whole image is 
filtered) applied is also dependent on those units -  the output 
of the HSR allows both methods.

5. Conclusion

The article presented some hardware units which can be used 
to create an efficient rasterizer unit. In an FPGA 
implementation using XC2V6000-4 FPGA, all units can 
achieve 100 MHz system clock speed (with parts of the HSR 
Cells operating at double frequency), translating into 100 
million segments/sec for the segmenting units, and up to 1.6 
GPixels/sec depth/stencil fill rate for an 8 cell HSR Unit.

The two segmenting methods have to be analyzed using real- 
world applications to explore the overall performance 
increase exact segmenting offers. Similarly, to identify the 
potential benefits o f the program
performance of real applications should be measured under 
different conditions. These measurements then may be used 
to create an algorithm to adaptively alter segment size 
between frames, which is simple enough to be implemented 
in hardware.

References

[ 1 ] Michael Cox, Narendra Bhandari, Architectural 
Implications o f Hardware-Accelerated Bucket 
Rendering On the PC, Siggraph/Eurographics 
Workshop On Graphics Hardware, 1997

[2] Intel Zone Rendering Technology 3 Whitepaper, 
http://support.intel.com/design/chipsets/applnots/30262 
5.htm

[3] J. Torborg and J.T. Kajiya, Talisman: Commodity 
Realtime 3D Graphics fo r  the PC, Proc. ACM Conf. on 
Computer Graphics Conference(SIGGRAPH '96), 1996

[4] Eyles, John, Steven Molnár, John Poulton, Trey Greer, 
Anselmo Lastra, and Nick England, PixelFlow: The 
Realization, Proceedings o f the Siggraph/Eurographics 
Workshop on Graphics Hardware, 1997

[5] PowerVR Tile Based Rendering Whitepaper, 
http://www.pvrdev.com/pub/PC/doc/idx/whitepapers.ht 
m

[6] Péter Szántó, Béla Fehér, Exact Bucket Sorting for 
Segmented Screen Rendering, GSPX 2005 Pervasive 
Signal Processing, 2005

[7] I. Antochi, B.H.H. Juurlink, S. Vassiliadis, P. Liuha, 
Scene Management Models and Overlap Tests fo r Tile- 
Based Rendering, EUROMICRO Symposium on 
Digital System Design, 2004

[8] 3DMark05 Whitepaper, 
http://www.futuremark.com/companyinfo/7companypdf 
s

99

http://support.intel.com/design/chipsets/applnots/30262
http://www.pvrdev.com/pub/PC/doc/idx/whitepapers.ht
http://www.futuremark.com/companyinfo/7companypdf


Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Real-time Physically Accurate Soft Shadows

Barnabás Aszódi, László Sziimay-Kalos

Department of Control Engineering and Information Technology, 
Budapest University of Technology, Hungary 

Email: szirmay@iit.bme.hu

Abstract
This paper presents a GPU based real-time algorithm to render physically accurate soft shadows for spherical 
light sources. The algorithm shoots shadow photons which are splat onto the shadow receiver surfaces at their hit 
points. The method needs a Shader 3.0 compatible driver and graphics card because o f the complexity the required 
shader instructions like texture reading in the vertex shader. Thanks to the high computational power o f the GPU, 
the algorithm can render realistic soft shadowing at very high frame rates, and can be included in games.

1. Introduction

Shadows are important not only to make the image realistic, 
but also to allow humans to perceive depth and distances. 
Shadows occur when an object called shadow caster oc
cludes the light source from another object, called shadow 
receiver, thus prevents the light source from illuminating the 
shadow receiver. In games and real time applications shadow 
casters and receivers are often distinguished, which excludes 
self shadowing effects. However, in real life all objects may 
act as both shadow receiver and shadow caster.

Point and directional light source generate hard shadows 
having discontinuous boundaries. However, realistic light 
sources have non zero area, resulting in soft shadows hav
ing continuous transition between the fully illuminated re
gion and the occluded region, called umbra. The transition 
is called the penumbra region. With hard shadows only the 
depth order can be perceived, but not the distance relations 
(Figure 1). Shadows should have real penumbra regions with 
physically accurate size and density to allow the observer to 
reconstruct the 3D scene.

The width and the density of the penumbra regions de
pend on the size of the area light source, on the distance 
between the light source and shadow caster object, and on 
the distance between the shadow caster and shadow receiver 
object.

The algorithm proposed in this paper generates shadows 
by casting shadow photons and visualizing them rendering 
small quadrilaterals into the texture atlases of the shadow

receiver objects. The size and the density of a quadrilateral 
are controlled by the distances of the light sources and the 
shadow caster and the shadow receiver, respectively.

The algorithm first casts shadow photons and finds where 
they hit the shadow receiver. The hit positions are computed 
in texture space. During photon tracing, the distances of the 
light source, shadow caster and receiver are also calculated. 
Based on these distances, the sizes of the quads representing 
the shadow photon splats are determined. The quads are ren
dered into light maps, and finally the scene is shown with the 
product of the material textures and the light maps already 
containing the darkening of the shadow photons.

2. Previous Work

A lot of different methods have been proposed to generate 
soft shadows. Simplest approaches consider the area light 
source as a collection of point light sources and blend their 
hard shadows together to obtain smooth transitions. How
ever, this approach can significantly degrade the rendering 
speed or the quality if the light sources are really large.

Samuli Laine et al.® developed an algorithm for physically 
correct soft shadows with shadow volumes and ray tracing. 
Their algorithm is targeted to production-quality ray tracers. 
Although, this method generates high quality shadows -  the 
same result as stochastic ray tracing -  but is far from real 
time.

Zhengming Ying et al.‘® developed a real-time and real-

100

mailto:szirmay@iit.bme.hu


Aszódi, Súrmay-Kalos / Real-time Physically Accurate Soft Shadows

IStt
Figure 1: The importance o f soft shadows. Left: without shadows only the depth order can be perceived. Middle: hard shadows 
are unable to visualize the distance between the shadow caster and the receiver. Right: soft shadows help the observer to 
recognize distance relations.

istic method for linear light sources. They sample the light 
sources and use several shadow maps. In their algorithm the 
quality of shadows depends on the number of samples.

Jukka and Jan  ̂created real-time soft shadow with penum
bra quads. Their algorithm generates physically not correct 
soft-shadow. They store additional information in a penum
bra map not only z-coordinate information'*'

In addition to physically based approaches, there are also 
fake methods. The simplest technique is to use depth mapped 
shadow algorithm to obtain a hard shadow map and to fil
ter it using a low pass filter. However, such approach does 
not take into account the distances between the light sources 
shadow casters and receivers, which would also be crucial to 
determine the density and size of the penumbra region.

Eric Chan and Frédo Durand^ improved the basic con
cept and made more accurate. They use shadow map, iden
tify silhouette edges, create “smoothies” (areas between the 
original and the enlarged silhouette edges), and render them 
with appropriate transparency values. These smoothies cre
ate penumbra regions. Arvo et a l . ' proposed an image space 
algorithm which also starts with a conventional shadow map, 
finds its edges, extends it with a flood fill algorithm, and 
computes the penumbra density in each pixel by a fragment 
program. Another interesting technique applies the concept 
of “blurring hard shadows” in the context of shadow volume 
algorithms, where the stencil buffer is filtered instead of the 
depth map

Assarsson and Möller^ used shadow volume based algo
rithm for generating physically based soft shadows. The al
gorithm creates additional penumbra volumes. It demands a 
lot of computational power.

The interested reader should also refer to the state of the 
art report on soft shadows * written by Hasenfratz et al.

3. The new soft shadow algorithm

The basic idea of the proposed algorithm is to shoot shadow 
photons that “darken” the lighting of the light source. 
Shadow photons are splat onto the shadow receiver sur
face. The process should meet the following requirements. 
At hard shadow regions of the shadow receiver, from where 
no point of the light source is visible, the total effect of 
shadow photons is expected to completely cancel the con
tribution of the light source. However, at penumbra regions, 
from where the light source is partially visible, the “darken
ing” must be proportional to the visible portion of the light 
source. The darkening is thus continuously decreasing fixtm 
the hard shadow edge to the regions where the full light 
source is visible. The shape and size of the penumtn'a re
gion depend on many factors, including the shape and size 
of the light source, of the shadow caster, and also on the ge
ometry of the shadow receiver. In order to cope with these 
complex relationships, the size of the splat shadow photons 
is controlled to make the penumbra regions meet the geo
metric requirements.

For the sake of simplicity, the light source is assumed to 
have spherical geometry, thus its projected area and shape 
are similar in all directions. Should we have planar light 
sources, the algorithm can still be used, but the projected 
size of the light source depends on the direction between the 
light source and the shadow caster.

In case of a spherical light source, the penumbra region 
responsible for soft shadows depends on the following fac
tors: the size of the light source that is described by diameter 
d, distance í  between the light source and the shadow caster, 
distance r between the light source and the shadow receiver, 
and orientation angle 0 between the surface normal at the 
shadow receiver and the illumination direction. Examining 
the geometry of figure 2, the linear size of the penumbra can

101



Aszódi, Szirtnay-Kalos /  Real-time Physically Accurate Soft Shadows

Figure 2: Penumbra generated by a spherical light source.

be obtained as:

u = d-
■COS0 ( 1)

We propose to set the size of the shadow photon splat ac
cording to this formula. Since shadow photons which are 
generated by the silhouette of the shadow caster are respon
sible for the penumbra, the obtained penumbra will have ap
proximately the expected size.

Equation 1 gives the size of the shadow photon splat in 
world space. However, if splats are rendered into texture 
space to obtain light maps, the expansion between the tex
ture space and world space should also be taken into account. 
To represent this expansion, in the pre-processing phase we 
render a texture for each object where texels store the ratio 
of world space and texture space triangle areas. When the 
size of the splat in world space is computed, the expansion 
texture is used to convert this result to texture space.

The shadow generation algorithm has three phases. The 
first phase of the algorithm renders the shadow casters from 
the point of view of the light source. Now we are inter
ested in whether a shadow caster is visible in a direction (i.e. 
pixel), and in distance s is from the light source center. This 
information can be put into a monochromatic texture, called 
the caster map, which stores distance j  or — 1 if no shadow 
caster is visible in a pixel. The shadow caster map is gener
ated and stored by the GPU.

The second phase renders the shadow receivers from the 
point of view of the light source center using the same cam
era setting and viewport resolution as in the first phase. This 
step identifies those points that are potentially occluded from 
the light source. To identify these points, the object id and 
the texture coordinates of the points are written into r,g,b 
channels of the rendering target, respectively. Additionally,

to prepare for the penumbra size computation (equation 1), 
distance r between the shadow receiver surface and the cen
ter of the light source, as well as the cosine of the orien
tation angle (cos0) are also computed. Reading the caster 
map at this pixel to obtain shadow caster distance s, we have 
all values needed to evaluate equation 1. The result of this 
formula, that is size u of the photon splat in world coordi
nates, is multiplied with the expansion between the texture 
and world space, and the product is written into the alpha 
channel.

If no shadow caster is visible, i.e. the alpha channel of the 
caster map is negative, or distance s between the light source 
and the caster is not smaller than distance r between the light 
source and the shadow receiver, then no occlusion occurs 
and therefore no shadow photon is generated. To indicate 
this case, the alpha channel is set to a negative value. Thus 
the result of the second rendering phase is the identification 
and the size of shadow photon splats in texture space. This 
image is called the receiver map.

Having the receiver map, we know where and how large 
shadow photon splats should be placed. Placing the shadow 
photons, either the original surface textures can be modified 
or a separate light map can be generated.

Figure 3: A scene with hard shadow and direct illumina
tion (left). The product o f the texture and the light maps o f 
the shadow receiver room (right). In order to avoid shadow 
leaking the faces are separated by void regions in texture 
space.

To obtain the shadow, shadow photons are splat, that 
is, they are rendered as small quadrilaterals having semi
transparent Gaussian filter textures. We render as many 
quadrilaterals as many pixels the receiver map has. A sin
gle pixel of the receiver map thus represents a single shadow 
photon.

The vertex shader reads the receiver map and sets the co
ordinates of these quadrilaterals according to the center of 
the shadow photon and its size. Note that texture reading in 
the vertex shader is possible only with Shader 3.0 compatible 
graphics cards. The transformation is set to render to texture 
space, thus photons are splat onto the surface texture.

102



Aszódi, Szirmay-fCalos / Real-time Physically Accurate Soft Shadows

I I  splat size 
+ IN.pos.x * size; 

IN.pos.y * size;

The simplified vertex shader code in HLSL is the follow
ing:

float4 ph = tex2Dlod(receivermap, IN.phcoord); 
OUT.filtcoord =IN.pos.xy; // filter coords 
float size = ph.a;
OÜT.hpos.x = ph. x  * 2 - 1 
O U T ,h p o s . y = l - p h . y * 2  
OUT.hpos.w = 1;
if (ph.a < 0) OUT.hpos.z = 2 ;  // ignore 
else OUT.hpos.z = 0; // valid

The original quadrilateral vertices passed in (I N .p o s )  
are set to the vertices of a unit rectangle by the CPU. Si
multaneously, the CPU passes the coordinates of the receiver 
map pixels in variable IN . p h c o o r d  one by one. The orig
inal quadrilateral is scaled and translated according to the 
shadow photon splat size and position, respectively, and the 
transformed vertices are put to the output position regis
ter IN .h p o s . Note that setting the z component outside 
the clipping region (OXJT.hpos.z = 2), we can let the 
clipping hardware ignore those pixels of the receiver map 
which does not contain shadow casters. Original vertices 
(I N .p o s )  are also used to address the Gaussian filter tex
ture in the pixel shader, therefore passed in a texture register 
(OUT. f  i l t c o o r d ) .

The pixel shader then computes the light map of the point 
using the partial visibility factor of the area light source:

float shadow = tex2d(filter, f i l t c o o r d ) ; 
return ilium * shadow;

The rendering target is the light map, which is multiplied 
with the BRDF texture during the rendering from the cam
era.

Rendering a small quadrilateral in texture space may re
sult in shadow leaking, that is darkening show up in sur
face regions that are close to the shadow photon in texture 
space, but not necessarily in world space. To eliminate these 
artifacts, the texture atlas should be carefully defined. As 
shown by figure 3, we should introduce void regions be
tween valid texture regions if shadow leaking between these 
regions should be prevented. The pixel shader code can iden
tify the void regions and reject the rendering of shadow pho
ton splats here.

Figure 4: Controlling of the size and the density o f the splat 
quads as the function o f the caster and receiver distances 
from the light source. Left: the resolution o f the caster and 
receiver maps is 8 x 8  pixel. Right: the very same scene ren
dered with 256x256 resolution maps. The tail o f the dragon 
is close to the left wall, thus shadow photon splats are small 
but strong here. The head o f the dragon is close to the light 
source and far from the wall, thus its shadow photon splat is 
blurry, that is weak and large.

Figure 5: This image has been rendered using 256x256 
resolution caster and receiver maps at 80 FPS on 
NV6800GTI2.8GHZ.

4. Results and further improvements

The speed of the algorithm mainly depends on the resolu
tion of the caster and receiver maps, and on the complex
ity of the geometry. The higher the resolution the better the 
shadow quality. The right image of figure 4 has been gener
ated with 256 x 256 resolution. It runs about 100 FPS on an 
NV68(XXjT with 2.6GHz AMD CPU for the dragon object 
enclosed by a box. If 64 x 64 resolution is enough, even 200 
FPS can be achieved.

4.1. Combination with hard shadow algorithms

Note that according to equation 1 the size of the splats is pro
portional to the size of the light source. Small light sources 
lead to small splats, which means that we need many shadow 
photons to constantly fill up the fully occluded shadow re
gions. Many shadow photons, in turn, correspond to high 
resolution caster and receiver maps, which degrade perfor
mance. Let us recognize that the proposed algorithm is good

103



Aszódi, Szirmay-Kalos /  Real-time Physically Accurate Soft Shadows

for large area light sources for which hard shadow algo
rithms are bad, and poor for small and point sources for 
which even hard shadows are accurate. This recognition 
leads to the combination of the proposed method with a hard 
shadow algorithm, for example, with hardware supported z- 
buffer shadows.

The combined algorithm uses the classical z-buffer 
shadow algorithm to render the fully occluded umbra, and 
the new algorithm to generate the penumbra. If we use the 
new algorithm also to compute the umbra simultaneously 
to the hard shadow algorithm, the result is still correct, but 
we have to carry out unnecessary computations. The perfor
mance can be increased by letting the new algorithm place 
shadow photons only around the silhouette edges. To rec
ognize these places, when the receiver map is generated, the 
caster map is read not only in a single pixel but the neighbor
ing pixels as well. If the shadow caster is seen in all neigh
boring pixels and is closer than the receiver, then the point 
occluded by the caster in the center pixel is assumed to be 
in the umbra, thus no shadow photon is generated here. In
stead, this point is handled by the hard shadow algorithm. 
However, when the neighborhood of the pixel contains pix
els where no caster is seen, the shadow photon is generated 
as discussed earlier.

4. Eric Chan and Frédo Durand. Rendering fake soft shad
ows with smoothies. In Eurographics Symposium on 
Rendering, 2003. 2

5. Jean-Marc Hasenfratz, Marc Lapierre, Nicolas 
Holzschuch, and Francois X. Sillion. A survey of 
realtime soft shadow algorithms. In Eurographics 
Conference. State o f the Art Reports, 2003. 2

6. F. Kirsch and Doellner J. Real-time soft shadows using 
a single light source sample. Journal ofWSCG, 2003. 
2

7. T. Kovács and Gy. Antal. Soft-edged stencil shadow in 
CAD applications. In Harmadik Magyar Számítógépes 
Grafika és Geometria Konferencia, 2005. to appear. 2

8. Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehti- 
nen, and Tomas Akenine-Möller. Soft shadow volumes 
for ray tracing. In ACM SIGGRAPH, 2005. 1

9. C. Wyman and C. Hansen. Penumbra maps. In Euro
graphics symposium on rendering, 2003. 2

10. Zhengming Ying, Min Tang, and Jinxiang Dong. Soft 
shadow maps for area light by area approximation. In 
Proceedings o f the 10th Pacific Conference on Com
puter Graphics and Applications, 2002. 1

5. Conclusions

This paper presented a GPU algorithm for realistic soft 
shadow generation. The algorithm can render inter object 
shadows. The algorithm is particularly effective when com
bined with a hard shadow algorithm, such as the GPU sup
ported depth mapped shadow method. The algorithm runs at 
high fiamé rates and can be applicable in games. The draw
back of the method is the requirement of Shader 3.0 support.

Acknowledgements

This work has been supported by OTKA (T042735), Game- 
Tools FP6 (1ST-2-004363) project, by the Spanish- Hungar
ian Fund (E-26/04).

References

1. Jukka Arvo, Mika Hirvikorpi, and Joonas Tyys- 
tjarvi. Approximate Soft Shadows win an Image- 
Space Flood-Fill Algorithm. Computer Graphics Fo
rum, 23(3):271-279, 2004. 2

2. Jukka Arvo and Jan Westerholm. Hardware accelerated 
soft shadows using penumbra quads. Journal ofWSCG, 
2004. 2

3. U. Assarsson and T. Akenine-Möller. A geometry- 
based soft shadow volume algorithm using graphics 
hardware. ACM Transactions on Graphics, 2003. 2

104



II

Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Soft-Edged Stencil Shadow in CAD applications

Péter Tamás Kovács,' György Antal^

'  Archi-Data Ltd.
 ̂Faculty of Informatics, Eötvös Loránd Science University

Abstract

This paper describes a shadow generation technique that generates soft edges o f shadow boundaries. The al
gorithm works in object space and based on the shadow volume method. We do not claim that the algorithm 
generates physically plausible shadow boundaries, umbras and penumbras. However, the generated images are 
visually pleasing and compared with the shadow volume algorithm that generate only hard shadow boundaries 
the computational overhead is negligible and the method works in real-time. Additionally, we extend our algo
rithm and overcome a typical artifact o f this type o f approaches, namely the halo, which appear at light intensity 
discontinuities.

1. Introduction

Creating shadows in interactive and real-time applications 
has been subject to serious investigation for years. The ever 
increasing computational power of the hardware makes it 
possible that nowadays we are witnessing a shift of focus 
from the performance centric approach to algorithms that 
deem it proper that the quality is more important. Special 
effects like realistic water, fire, smoke, alias-free edges, ac
curate shadow boundaries and soft shadows slowly become 
commonplace. However there is a performance cost when 
the rendering system supports these effects, no wonder that 
CAD applications rarely implement them. For the user of 
a CAM software this may be acceptable, but in architectural 
design there is a real need for photorealism. Consider the sit
uation in which the architect is able to quickly sketch a house 
with garden and a fence or a room interior with furniture ac
cording to the preference of the customer and he is instantly 
able to show the image to the customer that resemble the 
real product as accurate as possible. This was one of the mo
tivations which inspired the application of soft shadow into 
our CAD application. However, we have wanted a solution 
which causes little performance drop and suits well to our 
well tested shadow volume algorithm.

Shadow casting [SzK03] [SzM04] is crucial for human 
perception. To corroborate this belief Mamassian at al. 
[Mam98] undertook different psychophysical experiments 
and concluded that shadow helps to

understand the relative position o f an object fix)m the 
shadow receiver and it helps to estimate the object size 
(see figure 1)
understand the directly not visible geometry of an oc
cluder (see figure 2)
understand the geometry of the receiver (see figure 3).

Figure 1: Object relative position from the ground is re
vealed.

105



Pkovacs /  Soft-edged stencil Shadow

^  Point light source

Figure 2: Hidden geometry o f the object is revealed.

Figure 3: The geometry o f the ground is revealed.

1. Hard shadows and soft shadow

The importance of shadow is beyond question, however the 
fixed function graphics pipeline of the video card does not 
consider the shadowing factor. Considering a usual point 
light source -  which is a preferred lighting term used by the 
graphics pipeline -  a point on the ground is either lit or is in 
shadow, which means the light source is occluded by an ob
ject. This is a binary relationship, which results hard shadow 
(see figure 4)

There are a number of approaches for shadow generation 
of this type.

Per-vertex shadow
This kind of method requires high tessellation level of 
shadow receivers. Before polygon rasterization, it precal
culates how much light a vertex receives, determines the 
vertex color and stores it with the vertex position. The ac
tual rendering of the graphics pipeline is fast, since the 
lighting is disabled and the GPU is free from any illumi
nation calculation. This approach is most useful in radios-

.O s
1 ' '  '

Occluder; A W ':

Figure 4: Hard shadow of a point light source.

ity settings, in which after a costly precalculation stage 
the walkthrough of the scene should be fast. However, the 
method cannot be used in dynamic environments in real 
time.

Lightmaps
The idea is the same as before, but now the light contri
bution is stored in a small resolution texture and not in 
the vertices. Rendering of the high resolution diffuse tex
tures are modulated by these lightmaps. The application 
of lightmaps was common in ’96 when the first Quake 
engine appeared, but the significance of this technique 
slowly dropped. This approach does not require heavily 
tessellated geometry, but it requires a lot of texture mem
ory and as before, it cannot be used in dynamic scenes.

Projected shadow
The projected shadow algorithm works by generating the 
silhouette of the shadow caster object into a texture. Then 
project this texture from the light’s point of view to the 
receiver. This receiver is usually the ground plane. The 
method requires the categorization of objects to occlud
ers or receivers, and therefore casting self-shadow are not 
easily performed.

Shadow maps
Phobably, the most popular shadow generation algorithm 
is shadow mapping [Wil78], which is certified by the fact 
that it can handle shadows of dynamic scenes in real time. 
It works by first generating a depth image from the light’s 
point of view. This is called depth map or shadow map. 
Rendering a pixel of the image from the camera’s point 
of view invokes a query about the shadow status of the 
pixel. The pixel P  (from the camera space) is transformed 
to the light’s space P' and the Z value P[ in the light’s 
coordinate system is determined. This is then compared 
to the corresponding shadow map pixel that contains the 
Z value that is actually visible to the light source. If the

106



Pkovacs /Soft-edged stencil Shadow

Z value of the shadow map is less than the transformed Z 
value P[ the point P  is in shadow.
It is a straightforward and simple algorithm, which does 
not generate any additional scene geometry. This is the 
main advantage. On the other hand, since shadow map is a 
discretized representation of the occlusions seen from the 
light source, it is not free from aliasing artifacts. The lim
ited bit precision of the Z buffer can raise Z-fighting prob
lems. And finally, omni-directional light sources pose an
other problem, since it is not possible to generate the im
age from the light’s point of view with 360 degrees view 
angle. The most straightforward remedy is using a cube 
map and rendering 6 shadow maps, but it costs too much. 
If some kind of distortion at the edges is acceptable, dual
paraboloid shadow maps can be used, which only requires 
2 shadow maps to render.

Shadow volumes
This method [Cro77] provides accurate hard shadows and 
it is also quite popular due to one of its most famous ad
vocate John Carmack, who uses stencil shadow volumes 
extensively in his impressive Doom III engine. Shadow 
volumes (or stencil shadows) are not easy to implement 
and the naive implementation suffers from heavy pixel 
fillrate problem [Llo04]. However it gains popularity in 
professional games and applications fast. Since our algo
rithm is based on shadow volumes, we dedicate a separate 
subsection for it.

Hard shadow generation algorithms are popular in games 
of today, but abstract light sources like point, spot and di
rectional lights do not exist in reality, since it is not possible 
that a finite measure of light energy could concentrate in a 
space of zero measure. Since all real lights have some ex
tent (sun, filament lamp, luminaries), their shadow cannot 
be simulated by point lights.

Soft shadows [Has03] are generated from spatially ex
tended light sources. In this situation (see figure 5) the fully 
shadowed area is called umbra. Every point of the umbra is 
hidden from the light source and therefore cannot see any 
part of it. There is a smooth transition from umbra to the 
fully lit region, this in-between area is called penumbra. Sur
face points of this area can view part of the light source. In 
this scenario the shadow is formulated by the union of the 
umbra and the penumbra.

Sometimes the hard edged shadow can be mistakenly mis
interpreted as a new geometric object, which can never occur 
with soft shadows.

3. Shadow volume algorithm

We briefly detail the shadow volume [Eng03] algorithm in 
this section, since our algorithm is based on this method.

The main idea of the shadow volume algorithm is de
termining the areas of the world that are in shadow using 
shadow volumes.

Area lighl source

\  r\ i A. o  V Occluder

»V . % \ \ sS , \

^  Area lighl source

Ocduder

Figure 5: Area light source generates umbra and penumbra.

The shadowed areas are those that are behind the occluder 
from the light point of view. If we look at the occluder, we 
can determine the edges that form its contour from that view. 
If we extrude the object away from this point, we get the 
shadow volume, and everything inside the shadow volume is 
in shadow.

Now, from the eye’s point of view, we have to determine 
the actual pixels that are in shadow. We start a ray from the 
eye, and start counting how many times do we enter or leave 
a volume. If we have entered more volumes than we have 
left when we hit an object, then we are in shadow (see figure 
6).

O source

Figure 6: The shadow volume counting. In case 1 and case 2 
the pixel seen by the camera is not in the shadow volume. In 
case 3 the pixel is in shadow since the stencil value is more 
than zero.

Fortunately, we actually don’t have to start rays and corn-

107



Pkovacs /  Soft-edged stencil Shadow

pute collisions with the volumes, because all this can be sim
ulated using the stencil buffer. First, we render the scene with 
ambient lighting only, with depth buffer enabled. Then, we 
switch depth buffer writing off (but leave depth testing en
abled), clear the stencil buffer to zero and configure the sten
cil in the following way: whenever a pixel passes the depth 
test, we increment the stencil value. Üsing this configura
tion, we render the front faces of the shadow volume. This 
equals with counting how many times do we enter a vol
ume. Then, we configure it so that every pixel passing the 
depth test decrements the stencil value, and render the back 
faces of the shadow volumes. That is, we count the number 
of shadow volumes we leave, and subtract this value from 
the previous one. At this point, pixels having a stencil value 
more than zero are in shadow.

Now we configure the stencil not to increment or decre
ment in any case, but enable stencil test, that is, a pixel gets 
updated only if it passes the criterion which will be equality 
with zero in our case. Then, we switch off ambient light
ing, and switch on our directional light, and render the scene 
again, using additive blending. As a result, we have the final 
shadowed image on the screen.

The method described here is called depth-pass, because 
of the stencil configuration used. Unfortunately this method 
does not work when the eye is inside a shadow volume, as 
it assumes that we are not in shadow when counting volume 
hits írom the eye. Shadows will be inverted when entering a 
volume with the eye.

The artifacts which appear when the camera is in shadow 
can be avoided by using the depth-fail technique, which was 
independently presented by John Carmack [Car99] and Bill 
Bilodeau [Bil99]. ^

4, Soft shadows methods

Generating soft shadows (see figure 5) is quite a complicated 
task.

First of all, it is not enough to determine the shadow sil
houette from only one point (usually the center), since this 
silhouette can be different for each point of the extended 
light source. Identifying all parts of the occluders which can 
be visible from any point of the light source is algorith
mically much more daunting than identifying it only from 
the center. Since very few methods can handle this problem 
accurately, no wonder that very few methods can claim to 
be physically plausible. However, we do not mind fake soft 
shadows if they serve images at interactive frame rates. Note 
also that in fast moving animations the shadow errors are 
usually less observable. A common failing example of fake 
soft shadow methods occurs in the situation when a large

t  This explain why the game developer community calls the depht- 
fail technique as Carmack's Reverse.

light source is placed directly above the occluder. In this case 
the physically exact image does not contain totally dark um
bra regions. It seems to happen that simulating this effect 
correctly is not beyond the reach any real-time soft shadow 
algorithm.

On the other hand, shadows from several light sources 
pose another problem. In contrast to point lights, where the 
shadow area is the simple union of all shadows, the area 
lights can produce complete dark area (umbra) on surface re
gion that none of the light sources blocked completely (they 
belonged to the penumbras).

The most physically accurate solutions are based on ray
tracing, however these are not usable in our CAD context. 
Apparently there is no single method that can render phys
ically correct soft shadows in real-time for any dynamic 
scene. All the methods have one or other drawbacks. How
ever there are some approaches which look promising. We 
name a few of them here. At first we consider the shadow 
map based then the shadow volume based approaches:

Combining several shadow maps
One of the first method [Her97] regularly places sample 
points on the light source and generates binary occlusion 
maps from these points. The binary maps are then com
bined into an attenuation map. This is repeated for each 
shadow receiver geometry, therefore this method requires 
the classification of the scene into occluders and receivers 
beforehand. However with 8 samples it still shows visible 
artifacts. Usually the combination of 64 or more samples 
gives nice result. The extension of this method is the Lay
ered Attenuation Maps [AgifrO] which generates only one 
attenuation map for all shadow receivers.

Heidrich’s method
This method [HeiOO] works by not only computing the 
shadow map, but a special map called visibility chan
nel, which contains the percentage of visible light source 
area. This method is best suited for linear lights, on which 
shadow maps and visibility channel are generated for 
the two endpoints of the light source. The method was 
later extended to support polygonal light sources by Ying 
[Yin02].

Single sample soft shadows
This technique was developed originally for ray-tracing 
[Par98] for generating soft shadows using only a single 
shadow ray sample for a light source. This method was 
later extended to support graphics hardware by Brabec. 

Percentage-closer soft shadow
It is a relatively new method [FeiOS] published in Sig- 
graph 2005 based on an old idea of percentage-closer fil
tering (PCF) whis is usually used to overcome the aliasing 
defect of ordinary shadow maps. This method solves the 
problem of large light sources and it produces umbras that 
do shrink as penumbras grow.

Combining several shadow volumes 
The same brute force technique can be done with shadow

108



Pkovacs /  Soft-edged stencil Shadow

volumes alike with shadow maps. The drawback again is 
that this technique requires at least 64 or 128 samples to 
generate good-looking soft shadows.

Plateaus and Smoothies
Two object space soft shadow algorithms, which aim to 
extend the shadow volumes of the occluders by different 
geometries (cones, planes). Unfortunately, these methods 
generate only the outer penumbra, therefore occluders al
ways has an umbra, even when using a very large light 
source.

Penumbra wedges
Möller [Mol04] gave forth another extension of shadow 
volumes which has a fancy promise of being a real object 
based quantatization-free soft shadow volume algorithm. 
Instead of one quad, the method constructs a wedge for 
each silhouette edge of the occluder. The wedge contains 
a front face, a back face and two side faces. These shadow 
volume objects need special treatment when rendered to 
the shadow buffer. The first version of the method handled 
only spherical light sources, but it was later extended for 
polygonal lights, where even the light source intensity can 
come from an animated texture. The current version of the 
method uses vertex and pixel shaders and achieves real
time performance with moderately complex scenes.

5. Soft-edged stencil shadow

Our algorithm is based on the shadow volume approach and 
we incorporated techniques from the work of [Bre03] and 
[Mit04], but the greatest influence on our work is caused by 
Shastry [ShaOS].

The main idea is to use the contents of the stencil buffer 
as a shadow mask, but blur it before using. As we cannot 
directly blur the contents of the stencil buffer, we have to 
modify the original method in many aspects. The method 
consists of the following steps: Render the scene to a texture 
using ambient lighting, with depth writing and testing on. 
Switch off depth writing, configure stencil as mentioned at 
the simple shadow volume algorithm, and render the shadow 
volumes. Reset the stencil configuration. Then switch to an
other texture, but keep the depth/stencil buffer of the previ
ous pass. Render a full-screen quad with stencil test enabled. 
Now we have the contents of the stencil buffer in the texture 
what we call a shadow mask. We do a blur on this mask in or
der to get the soft edges. Then we render the scene with dif
fuse and specular lighting only. Finally, using a pixel shader 
we combine the ambient image, the diffuse-specular image 
and the blurred shadow mask in the following way: Final- 
Color = Ambient + ShadowMask * DiffSpec

In our implementation we used a horizontal and a vertical 
blurring pass on the shadow mask.

We used the following pixel shader for the horizontal blur 
filter. The vertical blur shader is very similar.
extern float shadowMaskSizeX;

#define width 4

struct VS_OUTPUT 
{

float4 Position : POSITIONO; 
float2 Texcoord : TBXCOORDO;

}i
sampler shadowMaskSampler: register(80);

float4 main(VS_OUTPUT IN) : COLORO 
{

float4 sum B 0.0;

for (int X ■ -width; x <« +width; x++) {
sum +B tex2D{shadowMaskSampler, i n .Texcoord 

•f float2(x / shadowMaskSizeX, 0)};
}
retumisum / (width * 2 + 1));

W W W
Figure 8: Shadow mask before blur, after horizontal blur 
and after horizontal and vertical blur.

Unfortunately this method - just like the one of Shastry 
for shadow map - suffers from the halo effect. If an object 
that is lit if placed before an object in shadow will have a 
bright contour, the so called halo. The same applies for the 
reversed case.

The more advanced method presented next successfully 
avoids the halo effect.

6. Haloless soft-edged stencil shadow

What is the main cause of the halo effect? At the edge of a 
lit object, the bright area is blurred onto the darker object in 
the back, and in the same way, dark is blurred back onto the 
lit surface. So somehow, we should avoid blurring. But if we 
don’t blur, we get back to the original hard shadow.

But there is a way to detect whether we should blur or not. 
The halo is caused by blurring shadow mask values that cor
respond to different objects, which are close together on the 
screen, but possibly far away in world space. These differ
ent objects can be detected using their depth values. In the
ory they can be detected by rendering objectIDs to another 
rendertarget. However, we have the depth values for free, 
since without any computation the z-buffer is generated in 
the first pass. So we use the depth buffer in the blurring pass, 
and don’t blur when the difference in depth values exceeds 
a given threshold. To be more exact, we test the depth value 
of every pixel in the filter kernel against the depth value of 
the center of the filter, and use the center color instead, if 
the depth difference is too large. This way, we avoid the halo 
effect, and still get the blurring where appropriate.

The horizontal blur pixel shader of the haloless method is

109



Pkovacs /Soft-edged stencil Shadow

Figure 7: Simple test scene with hard shadow, soft-edged shadow and halo-free soft-edge shadow.

extern float shadowMaskSlzeX; 
extern float depthThreshold;

#deflne width 4 

struct VS OUTPUT

float4 Position : POSITIONO; 
float2 Texcoord : TEXCOORDO;

sampler shadowMaskSampler: register(sO); 
sampler depthMap: register(sl);

float4 main(VS_OUTPUT IN) : COLORO 
(

float4 sum > 0.0;
float4 centerColor * tex2D(shadowMaskSampler, i n .Texcoord); 
float centerDepth » tex2D(depthMap, IN.Texcoord).r;

for (int X * -width; x <= -Fwidth; x++) {
float sampIedDepth » tex2D(depthMap, IN.Texcoord 

+ float2(x / shadowMaskSizeX, 0)).r;
sum

abs(sampIedDepth - centerDepth) > depthThreshold)
? centerColor :
tex2D(shadowMaskSampler,
IN.Texcoord + float2 (x / shadowMaskSizeX, 0) ,-

return(sum / (width * 2 + 1));

W W W
Figure 9: Shadow mask before blur, after horizontal blur 
and after horizontal and vertical blur. Note that shadow 
mask is not blurred at the upper edge, because here the oc
cluder meets the shadow receiver.

7. Results

The presented algorithm has been implemented in C++ in 
DirectX environment. We made our measurements on a Pen

tium IV 3 GHz computer with ATI Radeon X600 graphics 
card having 128MB VGA memory onboard. The rendering 
was performed windowed and the window resolution was 
640.X480.

We tried our algorithm with different scenes from which 
we present only two in this paper. Both scene consists only 
1 light source, but extending the algorithm for multi-light 
environments is trivial. We have chosen a simple scene of 
a single sphere for occluder to demonstrate the basic idea 
of the algorithm. This scene contains 772 triangles. A more 
complex scene shows an interior with a table in the center. It 
contains 23K triangles. Each scene comes from DirectX .X 
files.

simple scene interior scene

without shadow 1175fps 642 fps
hard shadow 825 fps 274 fps

soft-edged shadow 79fps 68 fps
halo-free soft-edged shadow 51 fps 45 fps

Table 1: Rendering speed fo r the test scenes.

We present time measurements in table 1 for the cases. We 
chose walkthrough animation, that means that the objects do 
not move. Therefore, the measured times are free from com
plexity of the shadow volume generation.

8. Conclusions

This paper has presented a new rendering technique for 
rasterization hardware that generates a special type of soft 
shadows we called soft-edged shadow. The algorithm is 
based on shadow volume, which is very popular in game- 
development. After hard shadow mask calculation we ap
plied two passes of blurring. One of the drawbacks of blur 
filters is the halo effect, which until now restricted the

110



Pkovacs /  Soft-edged stencil Shadow

Figure 10: Interior scene with hard shadow, soft-edged shadow and halo-free soft-edges shadow.

real usage of soft shadows in games. We proposed a solu
tion to overcome this artifact. Therefore, the main contri
bution of this paper are twofold: we applied the soft-edge 
technique to shadow volumes and created halo-free soft- 
shadows. Our results shows that the new extension does not 
require much more computational power compared to the 
soft-edged method and the elimination of the disturbing halo 
effect worths that extra time.

Acknowledgements

A big thank you goes to Ferenc Csonka, who were very help
ful in reviewing the publication and gave invaluable com
ments.

This work has been supported by ArchiData Ltd. The 
scenes have been modelled in CarolineCAD using a mod
ified GDL Geometric Description Language that was origi
nally developed by Graphisoft.

References

[Mam98] Pascal Mamassian, David C. Knill, Daniel Ker- 
sten The Perception of Cast Shadows. Trends in 
Cognitive Sciences vol. 2 (8), 288-295, 1998. 1

[Eng03] Hun Yen Kwoon The Theory of Stencil Shadow 
Volumes. ShaderXl Introductions & Tutorials 
with DirectX 9, Wolfgang F. Engel (editor), Word- 
ware Publishing, Inc., 2003. 3

[Bre03] Flavien Brebion Soft Shadows. ShaderX2 : 
Shader Programming Tips and Tricks with Di
rectX 9.0, Wolfgang F. Engel (editor), Wordware 
Publishing, Inc., 2003. 5

[Sha05] Anirudh.S Shastry Soft-Edged Shadows. 
http://www.gamedev.net/reference/articles/ 
article2193.asp, 2005. 5

[Mit04] Jason L. Mitchell Poisson Shadow Blur.
ShaderX3 : Advanced Rendering with DirectX 
and OpenGL, Wolfgang F. Engel (editor), Delmar 
Thomson Learning, 2004. 5

[WÍ178] Lance Williams Casting curved shadows on 
curved surfaces. ACM Siggraph conference, pp. 
270-274, 1978. 2

[Cro77] Franklin C. Crow Shadow algorithms for com
puter graphics. ACM Siggraph conference, pp. 
242-248, 1977. 3

[Car99] John Carmack Carmack’s Reverse 
(CarmackOnShadowVolumes.txt) 
http://developer.nvidia.com/attach/6832, 1999. 4

[BÍ199] Bill Bilodeau, Mike Songy Real Time Shad
ows. Creativity’99, Creative Labs, Inc. Sponsored 
game developer conferences, Los Angeles, Cali
fornia, and Surrey, England, 1999. 4

[Has03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas 
Holzschuch, Francois Sillion A survey of Real- 
Time Soft Shadows Algorithms. Eurographics 
conference, State-of-the-Art Report, 2003. 3

[Her97] Michael Herf Efficient generation of soft shadow 
textures. Technical Report CMU-CS-97-I38, 
Carnegie Mellon University, 1997. 4

[AgrOO] Maneesh Agrawala, Ravi Ramamoorthi, Alan 
Heirich, Laurent Moll Efficient image-based 
methods for rendering soft shadows. ACM Sig
graph conference, pp. 375-384, 2000. 4

[HeiOO] Wolfgang Heidrich, Stefan Brabec, Hans-Peter 
Seidel Soft shadow maps for linear lights high- 
quality. Rendering Techniques, Ilth  Eurograph
ics Workshop on Rendering, pp. 269-280, 2000. 
4

[Yin02] Zhengming Ying, Min Tang, Jinxiang Dong Soft

111

http://www.gamedev.net/reference/articles/
http://developer.nvidia.com/attach/6832


Pkovacs /Soft-edged stencil Shadow

shadow maps for area light by area approxi
mation. 10th Pacific Conference on Computer 
Graphics and Applications, pp. 442Ű443, 2002. 
4

[Par98] Steven Parker, Peter Shirley, Brian Smits Single 
sample soft shadows. Technical Report UUCS- 
98-019, Computer Science Department, Univer
sity of Utah, 1998. 4

[Mol04] Tomas Akenine-Möller, Ulf Assarsson Approx
imate Soft Shadows on Arbitrary Surfaces us
ing Penumbra Wedges. Thirteenth Eurographics 
Workshop on Rendering, 2003. 5

[SzK03] Szirmay-Kalos László, Antal György, Csonka 
Ferenc Háromdimenziós grafika, animáció és 
játékfejlesztés. ComputerBooks, 2003. 1

[SzM04] Márton Szabó Hardware generated shadows.
(CESCG) Central European Seminar on Com
puter Graphics, Budmerice, 2004. 1

[Llo04] Brandon Lloyd, Jeremy Wendt, Naga Govin- 
daraju, Dinesh Manocha CC Shadow Volumes. 
Eurographics Symposium on Rendering, 2004. 3

[FerOS] Randima Fernando Percentage-Closer Soft Shad
ows. ACM Siggraph conference, Nvidia Exhibitor 
Tech Sketches, 2005. 4

112



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Local Fairing of Freeform Curves and Surfaces

Péter Salvi*’̂  and Tamás Várady^

‘ Loránd Eötvös Science University, Budapest 
 ̂Geomagic Hungary, Budapest

Abstract

After reviewing different approaches, a new algorithm is presented for fairing B-spline curves and surfaces. It is 
based on a special target curvature, computed from the not-yet-faired curve or surface. The method is parameter 
invariant and local. It moves a single control point at a time, so to find a global optimum iterative methods with 
appropriate heuristics need to be applied. The results are illustrated by a few  examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]; Computational Geometry 
and Object Modelling

1. Introduction

Digital Shape Reconstruction (formerly called Reverse En
gineering) is a fast growing area in Computer Aided Geo
metric Design, which deals with the creation of geometric 
models using measured data. In many practical applications 
of DSR, surface fairness is a crucial matter, in particular in 
the automobile industry. Although fairness does not have an 
exact mathematical definition, researchers agree that it is in
herent to pleasing aesthetics, and that the curvature of fair 
surfaces must be distributed evenly. A wide range of graphi
cal interrogation methods (e.g. curvature maps, isophote and 
reflection lines) has been developed to detect small surface 
artifacts, but even with these, today fairing is a laborious 
manual process that needs a lot of skill. This is why there 
is a natural need for (semi) automatic fairing algorithms.

There are various approaches that can make a surface 
more fair, (i) Variational methods integrate fairing into the 
surface approximation process, (ii) Postprocessing methods 
usually define some fairness measure, and try to minimize it 
by changing the existing surface geometry, while maintain
ing some constraints, such as the maximum deviation from 
the original surface. Here we will only deal with the latter 
approach that seems to be more useful in the DSR context. 
It is important to note, that though the faired surfaces should 
be smooth, the highly curved features of the original shapes 
must be preserved.

Since research on surface fairing methods inevitably in

volves research on two-dimensional curve (spline) fairing, 
here we will summarize the previous work on fairing both 
curves and surfaces, introducing and comparing the most im
portant fairness measures and algorithms.

In Section 2 different concepts of fairness will be pre
sented. Section 3 gives an overview on previous work in the 
literature. Section 4 presents our proposed algorithm, fol
lowed by test results in Section 5.

2. Fairness

Fairness may have different meanings in different applica
tions. Depending on the requirements, even the same surface 
can be qualified as fair or unfair, however, there are general 
guidelines that can be applied to most of the cases.

One widely used criterion of fairness is the smoothness 
and smooth distribution of reflection lines. If a fair object 
was placed into a room lit by parallel lights, the reflections 
of the light source should bend smoothly and evenly over the 
surface. This effect can be simulated using computer graph
ics —  the most modern modelling systems offer these kinds 
of rendering options.

Isophote lines are very similar to reflection lines, since 
their smoothness depends on the change of the first deriva
tive of the surface. An isophote line is a set of surface points 
where the angle between the normal vector and the viewing 
direction is the same (within a given tolerance). Since this

113



P. Salvi and T. Várady /  Fairing Curves and Surfaces

map is much simpler than the previous, but reveals just about 
the same flaws, it is more often seen in practice. Another 
variant is the highlight band,  ̂ which can also be computed 
very fast.

While these maps simulate something that is visible to the 
eye under special conditions, there are others that only have 
a mathematical meaning, but still proved to be crucial in ex
amining fairness. These are the curvature maps and the cur
vature combs, which depend on the second derivatives. Cur
vature maps colour-code the curvature values and can have 
various types (Gaussian, mean, minimum, maximum, etc.), 
curvature combs display the values as orthogonal straight 
line segments along a curve.

These methods are also called visual interrogation tools, 
because they help the user to find minor discontinuities or 
wiggles on the surface. Since these are found by looking at 
the changes of the map, they show flaws of one degree higher 
than the derivatives the tool depends on.

In order to create a fairing algorithm, it is common to de
fine a fairness measure, i.e. a functional that represents the 
fairness of the surface. In other words, we can say that a sur
face S is fair, if

J='{S) <  X

applies, where i: is a user-defined tolerance. One “classical” 
definition of fairness by Farin and Sapidis is as follows:

A curve is fair if its curvature plot is continuous 
and consists of only a few monotone pieces.'’

In the next section, we will review what sort of other al
ternatives exist.

3. Previous Work

In this section we introduce the most well-known or promi
nent measures and algorithms in the literature. We will also 
present curve-fairing methods, since most results for sur
faces can be easily generalized from them.

As Roulier and Rando point out, we cannot hope to have a 
universal fairness measure or algorithm, but we should strive 
to create new ones, in order to give designers the freedom of 
choosing the most suitable algorithms for their tasks.'''

3.1. Fairness measures

A natural measure for curve fairness is the strain energy, that 
is based on a drawing technique used in ship design, from 
the 18th century until today. To create a smooth curve, metal 
weights were placed at the interpolation points and a flexi
ble spline was spanned between them. The resulting curve c 
minimizes the strain energy, yielding the measure

■ =  |(K (s))^d5,

where k(s) is the curvature of the curve as a function of the 
arc length. This minimizes the mean curvature, while giving 
a penalty to the extreme values by squaring.’*’

Computing the curvature can be difficult, so it is often re
placed by a simpler, parameter-dependent formula:

' =  /(c " W )- dr. (2)
The third degree interpolating spline minimizes this value, 
but has the drawback that in cases where the parameteriza
tion substantially differs from the arc-length parameteriza
tion, fairness is not guaranteed, and unexpected results may 
occur.

Since neither (1) nor (2) penalizes the sign change of the 
curvature, curves faired by these measures may preserve un
wanted inflections. Different variations of the interpolating 
spline were devised to avoid this, e.g. the spline in tension or 
the v-spline.'’

Moreton and Séquin introduced another measure, called 
Minimum Variation Curve, optimizing the variation of the 
curvature:'^

Emvc ■: I (k'(5))' ds. (3)

This has the advantage that it does not create unnecessary 
inflection points due to its convexity-preserving property.

The curve-fairing measures introduced so far all have their 
surface-fairing equivalents. Similar to the strain energy, in 
the surface case we can minimize the thin plate energy

rip  =  j j ^a{y^  + y^) + 2 { \ - b )  K iK adS, (4)

where ki and K2  are the principal curvatures of the surface S 
and a, b are material-specific constants that usually take the 
values a =  1 and b =  Q or b =  1

This also has a simpler variant

n  =  J J  Suu +  2.^v -h sjj, dw dv, (5)

which is parameter dependent, so it can only be used safely 
for isometric parameterization.

Moreton and Séquin suggested an alternative measure 
based on the variation of the curvature:

EÍmvs (6)

( 1)

that vanishes on spheres, cones and tori. Although this mea
sure gives excellent results, it requires very complex compu
tations.

3.2. Fairing algorithms

One of the simplest, widely used curve-fairing method is 
knot removal and reinsertion (KRR), originally conceived 
by Kjellander and later made local by Sapidis and Farin.^

114



P. Salvi and T. Várady /  Fairing Curves and Surfaces

If we define an order k B-spline as
n

*(0  =  ^'*'■^'■.*(0. (7)
1=0

where d, are the control points, the B-spline bases
and T =  (o)"Ío the knots, then it is at most C*~7. 
continuous at the knot points.

We can add knots to a B-spline in a way that its shape does 
not change. This can be unambiguously done by multiplying 
the control points with a matrix. On the other hand, if we take 
out a knot, we can only preserve the shape if the curve was 
originally -continuous at that knot point.

So the problem is locating the control points of

(f cr)
1=0

(8)

in such a way that d =  /4d applies, where A is the knot in
sertion matrix.* This breaks down to an overdefined equa
tion that can have several approximate solutions. Farin gives 
the most local solution for third degree B-splines, ensuring 

continuity at the knot by repositioning only one control 
point.'*

This gives the idea of the KRR algorithm, i.e. to find, re
move and then reinsert the knot where the third derivative 
has the largest discontinuity. The process may be iterated un
til a suitable end condition is met. Finding such a condition 
is not a trivial task. A vast range of heuristics can be applied, 
including best-first-search* and simulated annealing.*^

Eck and Hadenfeld fix all but one control points and lo
cally minimize the fairness measure

 ̂ ; =  2,3 (9)

while keeping the distance from the original curve under a 5 
tolerance:*

m a x { |x (i) -x ( i) | | f  €  < 6 . ( 10)

Because of the convex hull property, this is easily done by 
preserving the |dr — dr| < 8  inequality:

a ; =dr-t-5
la ^ -d .i (11)

Both of these methods have equivalents in surface fairing. 
The main disadvantage of the KRR algorithm is that remov
ing a knot changes a whole line of control points in the other 
parametric direction, e.g. if we have a surface

(=0 ;=o
(m ,v ) € [uk-i,Un+i] X [v;-i,v„+ i],

( 12)

where U =  ^  represent the knots, re
moving a knot Vs means removing a knot from all of the

B-splines x,- =  where i =  k ,.. . ,n .  Further
more, the generalized KRR only ensures continuity in 
one parametric direction.

Hahmann proves that it is sufficient to remove and rein
sert a knot in only three rows or columns of B-splines, thus 
the algorithm can be made local for surfaces.* However, 
continuity in only one direction is not satisfactory in real-life 
applications.

Hadenfeld propo.sed a fairing method using the measure 
(5), as above only one control point is moved at a time and 
the largest deviation is constrained from the original.*

In a recent publication* fairing was performed through the 
optimization of knot vectors; in our research, however, we 
preserve the original knots.

4. The New Algorithm

In this section we first sketch a fairing algorithm for curves, 
then we generalize it for surfaces. We can expect that the cur
vature comb of a fair curve is smooth, without any jumps or 
suddén changes. Therefore we can smooth the curve defined 
by the curvature comb’s endpoints, which is practically the 
same as the evolute, due the k  == 1/p equality. We will call 
the smoothed curve the target evolute.

Now we want to find a curve that is close to the original, 
but whose evolute is the target evolute. This also defines a 
fairness measure: the closer the evolute is to the target evo
lute, the fairer is the curve. Let n denote the normal and e the 
target evolute, then our fairness measure is

E =  J ||(c(t) +  p n (i))-e (f)||^ d i, (13)

assuming that the two curves have a common parameteriza
tion. The algorithm for finding the minimum of this func
tional will be presented later. Controlling the deviation from 
the original curve can be managed in the same manner as 
written in the previous section.

Since the evolute (and the curvature comb) may be self- 
intersecting, we use directly the curvatures instead, so our 
measure becomes

(14)

where g is the smoothed (target) curvature.

In the surface case the single curvature need to be replaced 
by the two principal curvatures. Let gi and g i be the target 
curvatures based on K| and K2 , then

ft =  L L ( | K i («í,V;) -gi(«i,vy)p-l-
' * (15)

\K2{Ui,Vj)-g2{ui,Vj)\^) 

is a meaningful fairness measure.

115



P. Salvi and T. Várady / Fairing Curves and Surfaces

4.1. Determining the target curvature

Any simple and fast smoothing method can be effectively 
used for defining the target curvature, for example averaging 
the consecutive sample points of the evolute. Smoothness of 
the target curvature is much more important than to be close 
to the evolute of the original curve, therefore we should use 
a loose sampling rate. Global averaging can remove parts of 
the curvature that represent features, so the user should be 
allowed to restrict the smoothing or edit the target curvature 
manually.

Another possibility is to fit a NURBS curve over the sam
pled points. For surfaces this leads to the solution of a system 
of Unear equations that minimizes the functional

=  (9 = 1 .2 ) ,  (16) 
i j

where iĉ  is a principal curvature of the original surface (here 
the curvatures are interpreted as surfaces over the parameter 
domain). To get smooth results, we should also minimize the 
curvature of the fitted surface:

l|2 ,

i j

I  /Ju •/V

(17)
u,v) du dv,

where is the curvature of gq.

Having the target curvatures for our curves and surfaces, 
the next step is to modify the current entities in such a way, 
that their curvature gradually gets closer to the target.

4.2. Finding the optimal solution

For simplicity’s sake here we present an iterative method that 
moves only one control point in every iteration. This has the 
advantage of locality in exchange for speed, but this draw
back is countered by our choice of minimization algorithm 
—  the downhill simplex method, which is simple and very 
fast.'3 An iteration consists of the following steps:

1. Select the next control point to move from a priority 
queue.

2. Minimize the fairness measure by moving the selected 
control point.

3. Calculate a new control point position if it falls too far 
from the original (see (11)).

Selection of the next control point has great influence on 
the quality of fairness. Selecting the control point where the 
largest deviation of the target curvature occurs is a natural 
choice. However, this can lead to a deadlock, if the same 
control point is chosen over and over again. A list of the 
recently moved control points may be kept in order to avoid 
this. Also, boundary control points should not be selected for 
most applications.

Other minimization procedures to find the global opti
mum can also be used, such as simulated annealing.

Figure 1: The initial curve with its target curvature in green.

5. Results

Figure 1 shows a curve before fairing. The original curvature 
comb and the original control polygon are also shown. The 
green line is a smooth version of the given curvature comb, 
this is the target curvature we want to approximate. Figure 2 
shows the curve after fairing, the final curvature distribution 
is clearly much better, though it is not necessarily identical to 
the target function due to tolerance constraints and the final 
number of steps. Figures 3-A highlight the effect of fairing 
through extrusion surfaces.

Figure 5 shows the actual and desired target curvature dis
tributions for a car body surface element. Table 1 summa
rizes the numerical results. As we can see, there is minimal

Figure 3: Extrusion surface of the initial curve.

116



P. Salvi and T. Várady /  Fairing Curves and Surfaces

Figure 4: Extrusion surface of the faired curve.

Iteration Fairness measure Max, distance (nun)

0 0.901531 0.00000

200 0.244919 2.91302

400 0.223582 4.40624

600 0.215052 5.02049

800 0.201543 5.14342

1000 0.198280 5.85641

Table 1: Fairing phases.

improvement after 400 iterations, which justifies to stop iter
ating. Figure 6 shows the isophote lines of the original sur
face before and after fairing. Figure 7 is a deviation map to 
show where the largest positional modifications took place 
in order to get the final faired surface.

6. Conclusions

Fairing curves and surfaces is a complex problem. Unfor
tunately, the goal of generating perfectly fair shapes can
not be unambiguously formulated with mathematical terms.

Figure 6: Isophote map of the initial and final surface.

Figure 5: Ki and Ka principal curvatures (teeth) and the tar
get curvature functions.

Figure 7: Distance map showing deviations from the origi
nal surface.

and there are many alternatives. Authors propose a method 
where a smoothed target curvature function is approximated 
step by step. The algorithm modifies a single control point 
at a time. Applying an iterative strategy, the global shape is 
optimized until the magnitude of the improvement becomes 
negligible. Our future research is going to replace the current 
iterative methods by direct methods, that can efficiently lead 
to fair curves and surfaces.

Acknowledgements

This research has been conducted within Geomagic Hun
gary, Ltd., Budapest. The first author is a PhD student at the 
Information Faculty of the Loránd Eötvös Science Univer
sity.

References

1. B. Aszódi, Sz. Czuczor, L. Szirmay-Kalos, NURBS 
Fairing by Knot Vector Optimization. Journal of 
WSCG, Volume 10, pp. 19-26, 2004.

2. K-P. Beier, Y. Chen, The Highlight Band, a Simplified

117



P. Salvi and T. Várady /  Fairing Curves and Surfaces

Reflection Model for Interactive Smoothness Evalua
tion. In; N. S. Sapidis (Ed.)> Designing Fair Curves and 
Surfaces, pp. 213-230, SIAM, ISBN 0-898-71332-3, 
1994.

3. M. Eck, J. Hadenfeld, Local Energy Fairing of B- 
Spline Curves. Computing Supplement 10, pp. 129- 
147, 1995.

4. G. Farin, Curves and Surfaces for Computer Aided Ge
ometric Design. A Practical Guide. Academic Press, 
5th edition, 2002.

5. G. Farin, J. Hoschek, M.-S. Kim (Eds.), Handbook 
of Computer Aided Geometric Design. North-Holland, 
2002.

6. J. Hadenfeld, Fairing ofB-Spline Curves and Surfaces. 
In: J. Hoschek, P. Kaklis (Eds.), Advanced Course on 
FAIRSHAPE, pp. 59-75, Teubner Stuttgart, ISBN 3- 
519-02634-1, 1996.

7. J. Hadenfeld, Local Energy Fairing of B-Spline Sur
faces. In: M. Daehlen, T. Lyche, L. L. Schumaker 
(Eds.), Mathematical Methods for Curves and Surfaces, 
pp. 203-212, Vanderbilt University Press, ISBN 0-826- 
51268-2, 1995.

8. S. Hahmann, S. Konz, Knot-Removal Surface Fairing 
using Search Strategies. Computer Aided Design 30, 
pp. 131-138, 1998.

9. S. Hahmann, Shape improvement o f surfaces. Comput
ing Supplement 13, pp. 135-152, 1998.

10. M. Hoffmann, Geometric and Solid Modeling. An In
troduction. Morgan Kaufmann Publishers, 1989.

11. H. P. Moreton, C. H. Sequin, Functional Optimization 
for Fair Surface Design. ACM SIGGRAPH Computer 
Graphics, Volume 26, Issue 2, pp. 167-176, 1992.

12. H. P. Moreton, C. H. Sequin, Minimum Variation 
Curves and Surfaces fo r  Computer-Aided Geometric 
Design. In; N. S. Sapidis (Ed.), Designing Fair Curves 
and Surfaces, pp. 123-159, SIAM, ISBN 0-898-71332- 
3, 1994.

13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, 
B. P. Flannery, Numerical Recipes in C. Cambridge 
University Press, 2nd Edition, ISBN 0-521-43108-5, 
1992.

14. J. Roulier, T. Rando, Measures o f Fairness for Curves 
and Surfaces. In: N. S. Sapidis (Ed.), Designing Fair 
Curves and Surfaces, pp. 75-122, SIAM, ISBN 0-898- 
71332-3,1994.

118



Third Hungarian Conference on Computer Graphics and GeomeU^, Budapest, 2005

Computing smoothness parameters

Gábor Renner

Computer and Automation Research Institute 
Hungarian Academy of Sciences

Abstract
The key problem in reconstruction o f complex free-form surfaces is to choose appropriate values for the 
parameters (degree, knots) o f the continuous surface which approximates the set o f measured data points, 
and also for the parameters o f the reconstruction process (tolerances, smoothing weight). The paper 
describes a reconstruction strategy, which gradually increases the number o f free surface parameters, while 
keeping the smoothness under control. We focus in the paper on the automatic adjustment o f the 
contribution ratio o f the distance term and the smoothness terms in the functional to be minimized A new 
method for controlling the ratio - which is based on the gradient o f the functional - has been developed and 
tested for reconstructing complex shapes.

Keywords: reconstruction, smoothing

1 INTRODUCTION

Reconstruction means to convert a large number of 
discrete data points generated by an appropriate 
measurement into continuous surfaces. The quality 
of the conversion depends on two basic factors; from 
functional point of view, the deviation of the surface 
from the data points should be as small as possible: 
from the point of view of aesthetic appearance, the 
smoothness and fairness of the surfaces are most 
important. Unfortunately, these two factors are in 
fundamental contradiction to each other. If a surface 
is 'too smooth', it cannot meet tight tolerances at 
highly curved areas. On the other hand, if the surface 
is 'too accurate', it will remain close to the data 
points, but unwanted oscillations may occur.

The most appropriate tool to solve the reconstruction 
problem is to minimize a functional, which depends 
on the free parameters of the surface and consists of 
two terms corresponding to the above two factors. 
The first term is the squared deviation of the surface 
from the data points, and expresses accuracy. The 
second term corresponds to the waviness of the 
surface. Although there are well-established methods 
to solve the functional minimization [1], [2], [3] one 
fundamental problem remains. The final shape of the 
surface strongly depends on the ratio between the 
two terms in the functional. The acceptable shape 
can be defined as the smoothest shape within a

given tolerance. This can be achieved by carefully 
adjusting the ratio of the two terms in the functional, 
which is difficult to realize automatically.

We have developed a reconstruction strategy, which 
gradually increases the number of free surface 
parameters, while keeping the smoothness under 
control. Beyond this, the process improves the 
surface parameterization and handles the problem of 
weakly defined portioins of the surface. The key 
question in this process is the automatic adjustment 
of the contribution ratio of the two terms in the 
functional. A new meWiod for controlling the ratio - 
which is based on the gradient of the functional - has 
been worked out. The paper describes the strategy 
of the surface reconstruction and discusses the 
algorithmic details and its realization.

2 SURFACE FITTING BASICS

A detailed review of mathematical techniques to fit 
smooth surfaces over point clouds is given in our 
previous paper [4], which discusses the topic from 
three main points of view; the strategy of the 
reconstruction, the functionals to be minimized and 
the parameterization of the surface. Here we repeat 
only the basic ideas of fitting continuous surfaces on

119



Retmer /  Computing Smoothness Parameters

a (usually large) set of data points, coming from 
measurements.

The surfaces to be fitted are represented by a tensor 
product 6-spline, as the conventional CAD 
representation of free form surfaces

S(u,v) = i(u)N j(v),
i=0 7=0

with control points S.j and B-spline basis functions

N f  and N j , which are fully determined by their 

degrees and knot vectors. The unknown control
points of the approximating surface are determined 
by minimizing the functional

where

r=l

Here the first term Flsq the least square deviation of 

the data points from the surface. The second 

term is an approximation of the thin plate 

energy, which is big if the surface is highly curved. In
this way the first corresponds to accuracy, while the 
second to the smoothness of the surface.

If we substitute surface equation into the functional 
and assume, that for each data points a pair of 
surface parameter values (o,v) are associated, we

in matrix notation. We getcan write F.S, and Fj

F^is) = s‘ M , s - 2 s ^ N ^ p  + p ' pIsq' Isq

and

F „ ( s )  =  s ’'M  s,

where the elements of matrix N  are the basis 
function values at the parameter value of the data

points, M jjq  =  N ^ N  and is the quadratic

matrix corresponding to the smoothness term.

120

Assuming degrees, knot values and smoothing 
weights are given and constant values, minimization 
of the above functional by setting its gradient to zero:

3F
ds

=  2 ( M , ^ + m ^ ) s  +  2 N ^ p  =  0,

results in the linear system

M s =  N '^p,

which can efficiently be solved for the unknown 
control points S ; j .

Unfortunately, for practical cases (industrial or 
biological surfaces) the above simplifying 
assumptions do not hold, which makes the 
reconstruction process a highly non-linear one, and 
difficult to automatize. In order to obtain a solution, 
first we fix a proper subset of the above quantities, 
and compute the best solution. Then the 
complementer subset is fixed and the rest is 
determined. A strategy is needed, what to fix and 
what and how to compute. In the next chapter we 
give a strategy for searching for an optimal solution 
in the high dimensional non-linear parameter space 
of the reconstruction problem.

3 STRATEGY OF RECONSTRUCTION

The process of reconstmction consists of multiple 
levels of iterations. It starts with the computation of 
an initial parametrization of the data points. Usually 
this is done by means of a reference surface [5], to 
which the data points are projected. An advanced 
method to create such a surface, which results in a 
valid parametrization, is given in [4].

Within the outer cycles, the degrees of freedom of 
the surface are increased, by refining the knot 
vectors. During the internal iterations the knot 
vectors are maintained and the weight of the 
smoothness functional is adjusted.

The key point in the above process is to keep the 
balance between accuracy and smoothness. In the 
next section we describe how to perform one cycle. 
Within this cycle we compute one best fit least- 
squares surface and several smoothed least-squares 
surfaces dunng the iterations for optimization of the 
smoothness weight. If the resulting candidate surface 
is within the given tolerance, it is accepted. 
Othenwise the process continues by reparametrizing 
the data points, adding new knots and starting a new 
cycle.

1



Renner /  Computing Smoothness Parameters

the matrices M Isq and M .,

modify smoothness refine knot vectors

Figure 1: Flowchart of reconstruction

4 COMPUTING SMOOTHING WEIGHTS

Determination of the smoothness weight A, within 
the /-th cycle is done in a two steps;

1. At the beginning of the Mh cycle, a pure least- 
squares surface is fitted. This surface is used to
compute the least-squares residual ,• of the

best approximation with the given knot vectors 
and point parameters.

2. Now we want to determine a smoothness weight

X i in such a way, that the resulting surface is 
significantly improved, but not over dominated 
by the smoothness functional. This means, that
we allow a growth of the residual to a 

value  ̂ in order to obtain a smoother result. 

We achieved good results by setting to

I.IS /jjq  j .  Since the knot vectors and the point 

parameters are not modified during this cycle,

unchanged and the search for X i  can be done 
efficiently by incremental modifications of the 
linear system.

Figure 2 shows our experience concerning the 
dependency of the least-squares residual with 
respect to the smoothness weight at different cycles 
v\nth a double logarithmic scale. Each graph can be 
divided into two almost horizontal regions and one 
middle region. In the first region smoothness has no 
effect, in the last region the shape is determined only 
by the smoothness and in between there is variation. 
The goal of the adaptive weight setting strategy is to 
keep the smoothness weight at the lower part of the 
middle region (working region), where smoothness 
has its positive effect and does not destroy accuracy.

Figure 2: Residual vs. smoothing weight

Realizing the above process a method is needed to 
solve the non-linear problem of finding a smoothing 
weight which results in a surface with given least- 
squares residual (Step 2). We developed a method 
which works by computing the derivative of the 
gradient of the composite functional with respect to
A:

8F
dsdX

= M. „ s - t - M  — =  0 
" dX

which is a linear equation for the derivative ds / dX. 
This can be very efficiently solved, since the system 
matrix M a n d  its factorization have already been 
computed in Step 1. By using this, Newton iteration

121



Renner /  Computing Smoothness Parameters

can be applied to determine the smoothing 
weight A.

In order to successfully apply the Newton iteration 
we have to ensure that the starting point lies within 
the middle, working region of Figure 2. To detect this 
we evaluate the norm of the gradient by solving the 
above equation for ds /  dA  and check if it is greater 
then a threshold value. If this is not the case, we 
apply a simple search method, which uses two 
previous and the current values of the residual, 
instead of its gradient.

5 RESULTS

We have tested the fitting strategy and the automatic 
smoothing weight adjustment by reconstructing 
objects with various shapes. They are taken from 
industry, biology and medical applications. The 
measurements were performed by a 3D laser 
scanner (Modelmaker) produced by the company 
SDScanners. The size of the point set varied 
between several thousand and several hundred 
thousand data points.

As an example, we discuss results obtained by 
reconstructing a part of a human knee bone, the end 
of the femur. The set of measured data point

consists of 18158 points with a relatively high level of 
noise, and can be seen on Figure 3.

Bicubic B-spline surfaces were fitted to the data 
points of a part of the surface, which is in connection 
with the counterpart (tibia) during motion. Figure 4, 5, 
6 show the influence of different smoothing weights 
on the shape of the generated surfaces. Color coded 
curvature maps are used to visualize the difference, 
and to evaluate surface quality.

Figure 4. Bone surface and curvature map with zero smoothness

The surface shown in Figure 4. lies everywhere 
within the specified tolerance, which was set to 0.5 
mm. The actual deviation is less than 0.38 mm. 
Because the smoothness weight was set to zero in 
this case, this Is the least square error achieved by

the selected surface parameters (degree, knots). 
However, the unsmooth behavior of the surface is 
not acceptable, especially along the borders and in 
the neighboring areas the shape exhibits a wide 
range of strongly varying curvatures.

122



Renner /  Computing Smoothness Parameters

Figure 5. Bone surface and curvature map with high vaiue of smoofhness weight

High smoothness weight was applied in case of the 
surface of Figure 5. which resulted in a very smooth 
surface, as it can be recognized in the curvature 
distribution. However, the surface far out of the 
specified tolerance, the average deviation is more 
than 1.1 mm. This effect is especially strong in the 
highly curved region (see right side) where the 
difference between the shape of the generated 
surface and that of the point set can be seen by 
eyes.

Figure 6. shows the result with an optimal smoothing 
weight, computed by the above automatic smoothing 
weight adjustment. The generated surface fulfills the 
accuracy requirement, and has a shape with high 
overall smoothness. Adjusting the smoothing weight 
allows keeping the balance between the smoothing 
effect and the ability of reproducing complex shapes. 
Only in this way it is possible to fully exploit the 
potential of the B-spline representation with given 
degrees of freedom.

Figure 6. Bone surface and curvature map with optimal value of smoothness weight

6 CONCLUSION

Fitting of smooth surfaces with given accuracy over a 
cloud of data points is a difficult task, because the 
influence of the various parameters on the resuiting 
surface has a complex nonlinear nature, in the paper 
we described a strategy for the reconstruction 
process, which decomposes the nonlinear 
optimization into a sequence of linear steps. A key 
problem of the surface fitting is the setting of the 
smoothing weight. An efficient method for the 
automatic adjustment of the smoothing weight is

suggested. As a result, a high quality, smooth 
surface can be obtained, which approximates the 
data points with prescribed tolerances.

7 ACKNOWLEDGEMENT

This project was supported by the Hungarian 
Research Grant NKFP/1B/0009/2002. Special thank 
is due to V. Weiss and L. Szobonya for programming 
and for preparation of the manuscript.

123



Renner / Computing Smoothness Parameters

8 REFERENCES

[1] Dietz, U 1998, Fair surface reconstruction from 
point clouds, Mathematical Methods for Curves 
and Surfaces, Vanderbilt Univ. Press, Nashville. 
79-86

[2] Sarkar, B. Menq, C.. 1991, Smooth surface 
approximation and reverse engineering. 
Computer Aided Design, 23, 9, 623-628

[3] Dierckx, P., 1995, Curve and surface fitting with 
splines. Clarendon Press, Oxford

[4] Weiss, V, Andor, L., Renner, G., Várady, T., 
2001, Advanced surface fitting techniques. 
Computer Aided Geometric Design, 19, (2002), 
pp. 19-42

[5] Ma, W., Kruth, J., 1995, Parametrization of 
randomly measured points for least squares 
fitting of B-spline curves and surfaces. 
Computer Aided Design, 27, 9, 663-675

124



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Removing errors from triangle meshes by slicing

M. Szilvási-Nagy,’^

’ Department of Geometry, Budapest University of Technology and Economics

Abstract
Many surface-oriented representations, e.g. layered manufacturing use triangle meshes. The data structures of 
such meshes may contain errors in numerical data and topological relations. For removing wrong triangles and 
filling simple holes a slicing algorithm will be presented.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Geometric Algorithms

1. Introduction

Triangle meshes are used in many surface-oriented applica
tions, e.g. layered manufacturing. In CAD systems different 
triangulation algorithms have been implemented to create 
discrete representations of surfaces. Unfortunately, the data 
structures of the created triangle meshes may contain errors 
in numerical data and topological relations Discrete ge
ometry algorithms and discrete differential-geometry opera
tors for estimating simple geometric attributes such as curva
tures for generating characteristic surface curves  ̂ and for 
smoothing meshes * require errorfree representations. For 
rapid prototyping (layered manufacturing) and tool path gen
eration in milling accurate plane sections consisting of one 
or more closed polygonal lines is a basic requirement. A pro
cedure for generating valid tool paths from section lines of 
defective triangle meshes can be found in

With an appropriate polyhedral data structure built on a 
triangular mesh topological errors such as holes and gaps 
can be detected efficiently For removing invalid triangles 
and filling simple holes a slicing algorithm will be presented. 
It works semi-interactively, and computes in each step only 
with the triangles that are effected by the slicing plane.

2. Error detecting in the mesh

A possible numerical representation of a triangle mesh gen
erated by CAD systems is described in an STL (stereo litog- 
raphy) format which became practically industrial standard.

t  supported by the Hungarian National Foundation OTKA No. 
T047276

Each STL file contains a set of triangles the elements of 
which are stored one by one independently of each other dur
ing the triangulation process. The data contained by an STL 
file are the following: for each triangle three coordinates of 
the normal vector and three coordinates of the vertices or
dered in counter clockwise direction. There are no topolog
ical informations about neighbouring relations in this data 
structure. The identification of the vertices is possible within 
a tolerance value of their distances. This can be done while 
reading the file by compairing the vertices of the actual trian
gle with those of read earlier. At the end of the reading pro
cess the set of triangles is described by the following data:

the number of the triangles (faces) Np,

the array of mesh points V): [x,y,z],-,<= \ , . . . ,Nv ,

for each triangle denoted by /y, f =  \ , . . . ,N p  the ver
tex cycle, i.e. three pointers to the vertices j \ J 2 , j 3  € 

AV} and three coordinates of its normal vector
[nx,ny,nz]i.

This is the so-called TRl format of the mesh. It still does 
not contain any topological informations. We complement 
this data structure with triangle edges et, i =  l , . . . ,Ne,  (Ne =  
3*Nf) ,  and generate a “half edge” polyhedral data structure 
on the mesh in the following way f  For each edge e,- we 
search an edge Joining the same vertices. If such an edge ex
ists, we link them to each other. If not, the edge is signed as 
boundary edge. A half edge is described by five pointers: the 
pointers to its starting and end point j l , j 2  e  { l ,...,A v } ,  
the pointer to the next edge in the edge cycle of the con
taining triangle next £ {1,...,A1«}, the pointer to the con
taining triangle f a c e / G  { l , . . . ,A i f }  and to the hriked edge 
l inké  Ne} if exists. Boundary edges are Unked to -1.

125



Szilvasi /  Slicing

This data structure is redundant, e.g. the end point of an edge 
is at the same time the starting point of the next edge in the 
edge cycle of a triangle, but it is very efficient for computing 
intersections.

In a correct triangle mesh representing the surface of an 
object each triangle has three neighbouring triangles, one 
along each of its edges, and each edge is contained exactly 
by two triangles. The existence of boundary edges shows 
gaps and holes in the mesh. Gaps and holes may arise from 
different reasons mainly along connection lines of joining 
surfaces or around sharp vertices due to numerical inaccu
racy or errors in the triangulation (Fig. 1).

.....

A, I /A,

/
....V

Figure 1: Errors in a mesh.

In layered manufactming the material is removed or stiff
ened along the contour ciuwes of consequtive plane sections. 
If these contour lines are not closed, the manufacturing can 
not proceed. Obviously, gaps and holes in the mesh result 
broken contour lines in plane sections.

Our aim is to detect such errors in the triangle mesh and 
to correct the triangulation.

In Fig. 2 a corrupted triangulation af a sphere is shown 
with different errors. A wrong triangle with a vertex outside 
of the sphere, two triangular holes and one invalid triangle 
(practically a double edge) are in the mesh. In a coloured 
representation the boundary edges can be seen immediately, 
consequently the user can check the mesh for holes.

3. Slicing the mesh

In this chapter we present a checking and healing algorithm 
by moving a slicing plane through the mesh and stopping 
it at defective areas. We compute the line of intersection at 
such user-defined positions of the slicing plane. The seg
ments of a plane intersection are cut by the slicing plane 
from the triangles which have vertices on both sides of the 
plane. Let Mtj and Mig denote the end points of the line of 
intersection on the edges ej and eg of the triangle Ft (Fig. 3). 
By the help of the pointers to the linked edges of ej and eg 
the neighbouring sides of the polygonal line are determined.

Figure 2: Defective mesh o f a sphere.

If no boundary edges have been cut, then the line of intersec
tion is a closed polygon or consists of more closed polygons. 
Otherwise chains of connected line segments or isolated line 
segments arise. The face containing an isolated line segment 
is obviously a wrong triangle in the mesh, therefore, it will 
be deleted. Two closest points of intersection on boundary 
edges show which edges are bordering a hole in the mesh. 
This is an essential information for filling holes, and allows a 
more effective healing algorithm than other methods search
ing through the whole mesh. Simple holes can be filled by 
defining new triangles between such boundary edges.

M .-

- F ,

Figure 3: Plane section o f a mesh.

In Fig. 4 the line of intersection of the mesh in Fig. 2 is 
shown containing one isolated segment and one gap. By re
moving the wrong triangle and adding one triangle to the 
mesh which fits the hole, the errors in this area disappear.

This slicing method works in a semi-interactive way. The 
user defines the cutting plane and gives commands to the al
gorithm about removing and adding triangles. The data of 
the line of intersection contain all 3D informations about 
the part of the mesh that is effected by the slicing plane, 
but searching for proximities (i.e. corresponding boundary

126



Szilvasi /Slicing

Figure 4: Slicing the mesh o f the sphere.

edges) is made in the slicing plane. In this way 2D proce
dures are applied in a 3D algorithm.

In Fig. 5 two rectangular holes are shown in the mesh of 
the surface of a cylinder and a vertical slicing plane. By 
choosing appropriate slicing planes these holes are filled, 
hereby the mesh is healed in few steps. The slicing can be 
made parallelly to each coordinate plane, and the moving 
steps are specified by the user. In this way the user can in
fluence in the filling procedure how a new triangle is defined 
by choosing which two edges of a hole are cut by the slicing 
plane.

Figure 5: Boundary triangles in the mesh o f a cylinder and 
a slicing plane.

In Fig. 6 a half of a cake baking form is shown with 
an intersecting plane, where only the boundary edges and 
their containing faces are drawn. There are errors of dif
ferent types in this mesh: gaps, holes, wrong triangles and 
too many, too small triangles along stiching lines of sur
face parts. Consequently, its plane sections are too confused

for making unambigious decisions for the healing algorithm. 
Perhaps a decimation algorithm should be applied first in or
der to get well arranged intersections.

Figure 6: Boundary triangles in a mesh and a plane section.

4. Conclusions

We have shown a semi-interactive algorithm for visualizing, 
checking and improving a triangle mesh by generating a suit
able data structure. The algorithm is implemented in the pro
graming language Java 1.2 and works a PC for meshes with 
about 70000 faces.

References

M. Desbrun, M. Meyer, P. Schröder and A.H. Barr. Im
plicit Fairing of Irregular Meshes using Diffusion and 
Curvature Flow. Computer Graphics Proceedings (An
nual Conference Series, 1999): 317-324. 1

2. Sang C. Park. Sculpured surface mashining using Ui- 
angular mesh slicing. Computer-Aided Design, 36:279- 
288,2004. 1

3. K. Polthier and M. Schmies. Straightest Geodesics on 
Polyhedral Surfaces. In H.C. Hege and K. Polthier, 
editors Mathematical Visualization. Springer Verlag, 
1998. 1

4. M. Szilvási-Nagy and Gy. Mátyási. Analysis of STL 
Files- Mathematical and Computer Modelling, 38:945- 
960,2003. 1

M. Szilvási-Nagy, I. Szabó and Gy. Mátyási. A 
Polyhedral Data Structure for Shape Characteriza
tion of Meshed Surfaces. II. Magyar Számítógépes 
Grafika és Geometria Konferencia (Budapest, 30.06- 
1.07.2004y.l\-ll. 1

G. Taubin. Estimating the Tensor of Curvature of a Sur
face from Polyhedral Approximation. In Proc. 5th Int. 
Conf. on Computer Vision (ICCV'95) (June 1995):9Q2- 
907. 1

127

J



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Digital shape reconstruction 
using a variety of local geometric filters

Zsolt Terék*’̂  and Tamás Várady^

* Department of Computer Science, Technical University of Budapest 
 ̂Geomagic Hungary, Budapest

Abstract
After briefly reviewing the steps o f digital shape reconstruction (DSR), we focus on describing various filters. Fil
ters extract different geometric properties over a triangulated mesh based on local estimations. Filters typically 
create connected regions in order to (i) determine the global structure of measured objects, (ii) classify primary 
regions by surface type and (Hi) highlight connecting features, such as, blending surfaces and sharp edges. Dif
ficulties o f setting the parameters o f filtering will also be discussed. Filters assist in achieving our final goal to 
automate the DSR process and provide high quality surfaces for reconstructed CAD models.

1. Introduction

Digital shape reconstruction systems (formerly reverse en
gineering) create CAD models from measured data sets of 
various objects.® Our primary interest here is the reconstruc
tion of mechanical engineering objects, which obey certain 
general principles of computer aided geometric design. First 
large functional or aesthetic surfaces are created; these can 
be of simple analytic types, such as planes, or cylinders; or 
swept surfaces, such as extrusions or surfaces of revolution; 
or free-from surfaces. These surfaces are often called pri
mary surfaces. Once these are defined they need to be in
tegrated by various operations, such as Booleans, or inter
sections. Between the primary surfaces relatively small con
necting surfaces are created, which smoothly join the pri
maries and satisfy special geometric or functional require
ments, such as blending surfaces, step surfaces, slots, etc. 
These surface elements are often called connecting features 
or secondary surfaces due to their dependency on the pri-

In the digital shape reconstruction process our goal is to 
discover the original topological structure of the object and 
fit surfaces accordingly. This is practically equivalent to ex- 
ttacting the unknown regions from the measured data and 
add type information. This process is called segmentation 
which fundamentally determines the quality of the surfaces 
being fitted and stitched together in the consecutive phases 
of DSR.®

For our discussions let us assume that after data acqui
sition the scanned point clouds have been filtered, aligned 
and merged, and a decimated triangular mesh has been cre
ated which reflects the geometry of the object with sufficient 
point density and accuracy. In order to build up the global 
structure and set the type of the individual regions we extract 
various geometric properties based on local neighborhoods 
over the triangular mesh.

These quantities—often called as indicators—may be 
scalars or vectors; they may characterize simple properties 
from elementary differential geometry, such as a local nor
mal vector or the principal curvatures; or may describe more 
complex properties, such as the best fit local nanslational di
rection or rotational axis. They may also characterize com
plex properties, such as similarity of a given point related 
to its neighborhood.' Filtering is the process of performing 
region separation or highlighting by the indicators. In our 
context the filters fall into three groups:

(i) extract the topological structure of the object by high
lighting highly curved portions of the mesh, which are 
likely to represent connecting feature regions.

(ii) classify primary regions by assigning a likely surface 
type information, for example, planar, cylindrical, ex
truded or free-form, etc.

(iii) classify connecting features with particular emphasis to 
constant and variable radius/range blending surfaces, step 
surfaces and sharp edges.

128



Zs. TerékandT. Várady /  DSR using fillers

(b) (c)

Figure 1: Steps o f digital shape reconstruction

This paper is structured in the following way. In Section 2 
we overview the basic phases of digital shape reconstruction 
and show a few examples. In Section 3 we discuss the most 
important filters applied by the above grouping. In Section 
4 we briefly discuss the difficulties of parameter setting for 
filtering.

2. Steps of digital shape reconstruction

The starting point of our algorithm is a decimated triangular 
mesh. To separate the primary and secondary regions first 
we apply filters which separate the highly curved point re
gions from the relatively fiat parts. As it is shown in Fig
ure 1(a) the result is a collection of disjoint primary regions. 
In between there are highly curved, so-called separator sets, 
which are likely to represent secondary surface elements. By 
extracting the mid-curves of the separator sets we get a graph 
called feature skeleton, which globally segments the triangu
lar mesh, see Figure 1 (b).

The edges of the feature skeleton will be widened if we 
have a "real" connecting feature. Figure 1(c) shows an ob
ject where all edges of the feature skeleton are replaced by 
two quasi-parallel curves, which will serve as boundaries 
for blend surfaces to be computed later. Note, that though 
we cannot go into details here, further connecting elements, 
such as vertex blends need to be inserted as well, to join the 
connecting features at a given vertex of the skeleton. This 
will yield the final surface model, as can be depicted in Fig
ure 1(d).

In other cases, the feature skeleton may represent shaip, 
i.e. zero-width features, when there is no need to widen, and 
the accurate location of the sharp edge needs to be computed. 
Such an example is shown in Figure 2(a) and Figure 2(b); 
the orange edges will be replaced by a blending surface, the 
purple edges remain sharp.

In this paper we do not discuss how one can fit surfaces 
onto the points of the segmented regions. There are two ba
sic approaches to approximate the segmented structures.® 
Automatic surfacing produces watertight quadrilaterals in a

computationally very efficient way. Functional decomposi
tion creates trimmed surfaces with more computation and 
more user assistance, but provides better surface quality. The 
‘pros and cons’ of the two approaches can also be found in 
the above paper.

3. Filters

This section describes the estimation methods for various in
dicators based on a set of sample points. Let p be the point 
for which the filter value is estimated, n denotes the size of 
the neighborhood and pi are the points in the neighborhood 
( ie[ l ,n]) .

3.1. Filters to characterize high curvature and flatness

3.1.1. Planarity

Planarity is to measure the flatness of a point set.* This value 
is defined to be the root mean square error of the points to 
the LSQ plane. The average error is the least eigenvalue of

n
Assuming £o <  Ei <  £2 being the eigenvalues of M, the pla
narity is defined as

planarity =

Note, that the LSQ plane itself does not need be determined.

Figure 3(a) shows an example object rendered according 
to the planarity value. Tlie color range from red to blue cor
responds to the planarity interval [0,mp], where mp denotes 
the maximum planarity estimated on the object.

3.1.2. Curvatures

There are several curvature-based scalar indicators derived 
from the principal curvatures (Kj and K2), such as the mean 
curvature (kj -F K2)/2  and the Gaussian curvature Kj K2. The 
principal curvatures, minimum (Ki) and maximum (K2), are 
also often utilized.

129



Zs. Tevék and T. Várady/DSR using filters

(a) (b) (c)

Figure 2: An object having both sharp and blended edges

There are different ways to determine the principal curva
tures. Ki and K2 are the eigenvalues of the so-called Wein- 
garten matrix. To estimate the Weingarten matrix’, the co
ordinate system should be transformed so that point p is the 
origin and the normal vector is the z axis. Then the best ex
plicit quadric surface is fitted to the points in least square 
sense. The Weingarten matrix consists of the partial deriva
tives of the quadric at the origin.

Fitting an implicit quadric to the points’ also gives us 
a way of curvature estimation, but this is less stable than 
the estimation described above. However, fitting an implicit 
quadric is often used for stable normal vector estimations.

Another method of curvature estimation using a polygonal 
mesh® is to integrate the curvature tensors assigned to the 
edges of the polygons. The advantage of this method is that 
arbitrary region of the polygonal surface can be used for the 
estimation, including parts of triangles.

3.2. Filters to classify primary regions

Here we follow the direct segmentation algorithm^ is a hier
archical method of simple tests to classify primary regions. 
First, the region is determined to be fiat, ruled or doubly 
curved. After that, several sub-categories are defined.

The top-level decision is made based on a so-called di
mensionality test. This basically analyzes the distribution of 
the normal vectors (estimated at the neighborhood of the lo
cation examined) on the Gaussian sphere. The result of the 
test assigns 0, 1 or 2 as a dimensionality value, showing 
whether the normal vector represents a point cluster, a curve 
or a larger area on the sphere.

Another measure for the dimensionality^ examines the co- 
variance values at the point of estimation. After projecting 
the normals onto the tangent plane, the covariance matrix of 
the planar coordinates are calculated. The dimensionality is 
derived from the eigenvalues of this matrix.

3.3. Filters to classify connecting features

For practical objects in mechanical engineering, the follow
ing types of connecting features occur most frequently;

Rolling-ball blends are defined by a moving sphere that is 
swept while touching two adjacent primary surfaces. The 
ball can have either constant or variable radius. Rolling 
bails create G1 continuity along the connections between 
the primary and the secondary features.

Constant or variable range blends are used when G2/C2 
continuity is needed between the surfaces, here the width 
of the blend needs to be extracted.

Sharp edges result from no connecting feature. The edge is 
defined by the intersection of the primary surfaces. There 
is only positional continuity along a sharp edge.

General swept surfaces are defined by a 3 dimensional 
spine curve and a 2 dimensional profile curve that is swept 
along the spine.

The blend filter described below (Sec. 3.3.1) is useful for 
finding blends, if the result of simple thresholding (see 
Sec. 4.1) is sufficient. The sharp edge filter (Sec. 3.3.2) eval
uated in the middle of a feature reasonably separates sharp 
and non-sharp features.

In order to distinguish between general swept surfaces and 
other blends, the minimum curvature estimation is combined 
with similarity indicators’ in the middle of the feature along 
the transversal direction. If there is no radical change in the 
curvature value, the feature can be considered a rolling-ball 
blend.'* The transversal direction is the direction associated 
with the minimum principal curvatuie.

As for the distinction between constant and variable ra- 
dius/range blends, the similarity of the minimum curvature 
estimations along the longitudinal direction should be deter
mined.

3.3.1. Blend filter

The purpose of the blend filter is to locate blends within the 
mesh. The maximum curvature is the inverse of the radius

130



Zs. TerékandT. Várady /  DSR using filters

of the blends and it is very small for the flat areas, but it is 
also significant at vertex blends. We define the blend value 
as the product of the maximum curvature and a factor that 
vanishes for vertex blends and is around 1 for blends. Since 
the minimum curvature is significantly smaller on the blends 
than the maximum curvature, the factor is defined by

Kk i,K2)
f { r)

|Ki |/|K2|:
,rl{r-\)

Here r  e  [0,1) and limr_,o+ / ( ' ’) =  1 and limr_, i -  / ( r )  — 0. 
In other words, /(r(K i, K2)) is small, if both curvatures have 
the same magnitude, and is close to 1, if K2 1:^ Ki .

In Figure 3(c), the rainbow colors assigned to the vertices 
correspond to the estimated blend filter values: pure red is 
the most concave, green is about zero and pure blue is the 
most convex blend.

3.3.2. Sharp Edge Filter

The aim of the sharp edge filter is to distinguish between 
sharp edges and small blends. The sharp edge filter is a vari
ant of the covariance filter, but there are certain differences.

The basic idea is to examine the normal vectors of trian
gles in the vicinity of a vertex. In case of a shaip edge, the 
majority of the triangles are on one of the neighboring rel
atively flat surfaces and only a few reside on the edge. On 
blends and other non-flat areas, more triangles come from 
the nearby smooth edge. Therefore in the vicinity of sharp 
edges the normal vectors of triangles form two well-defined 
clusters on the Gaussian Sphere. Figure 4 shows some typi
cal layouts of the face normals on the unit sphere.

(a) flat (b) blend

(c) sharp (d) vertex blend

Figure 4: Normal vectors on the Gaussian sphere

The sharp edge filter should return a value that reflects the 
extent how the normals on the Gaussian sphere are distrib
uted into two separate clusters. Call this value bicentricity.

First, the translational direction is determined: this is the 
normal of the plane that goes through the origin and mini
mizes the sum of squared distances from the points on the 
Gaussian sphere. The indicator value is set 0, if the transla
tion is not well-defined, i.e. smaller than a threshold.

The translational direction defines a great circle, which is 
orthogonal to the translational direction. The normal vectors 
are projected to the plane of this circle and their angle to 
some predefined direction is taken.

Bicentricity is calculated from this set of 1 dimensional 
values. Take the projection of the normal vector at the cur
rent point, it separates the values into two partitions. (The 
different colors of the points in Figure 4 indicate these par
titions.) Assuming the two parts are the two clusters, let v,- 
(i 6 [l,ni]) and wj (; 6 [l.nz]) denote the values of the two 
groups. Then bicentricity is defined as

ax
a% =
a =  0 1 -02

5i =  ^ I ( v í - ű l )
52 =  ^ I( w 'j - ű 2 )
b =  a /2  — 61 —82

b* -  h . ..
"(«l+U2)'‘

Rationale. On blends, the normals are equally distributed, 
thus their projection can be assumed to be equally distrib
uted. In this case, a  is about the half of the total angle and 
both 5i and 62 are about a /2 . Therefore b is near 0. On the 
other hand, assuming an ideal sharp edge 5,- =  0, so h is a/2 . 
The value b* incorporates a factor that emphasizes the cen
ter of sharp edges by taking the sizes of the clusters, which 
are nearly equal at the center and differ when going off the 
edges.

4. Difficulties of parameter setting

This section deals with the difficulties and problems arising 
when estimating indicator values. First filter-based segmen
tation methods are briefly reviewed. Then different environ
ment computation methods are studied, and finally the sta
bility of estimations is considered.

4.1. Segmentation

The basic method for separating regions and features is 
thresholding. Given a limit value, the separator set is defined 
by the vertices associated with an indicator value greater 
than that limit. Ideally the primary regions correspond to the 
connected components of the vertices not part of the separa
tor set.

131

=|i
ii:

Í i
M

f

!

IS



Zs. Terek and T. Várady /  DSR using filters

(a) Planarity (b) Dimensionality

Figxire 3: Different filters applied to the same object

(c) Blend

There are several problems with global thresholding. It 
is very difficult to determine the appropriate limit value 
for an unknown object with unknown dimensions and un
known shape variation. Moreover, the noise and the insta
bility of the estimations result in false-regions and dummy- 
features. Generally the feature-region decomposition de
fined by thresholding is inconsistent.

More general approaches are needed to make a consis
tent segmentation of the triangulated data. Region growing 
methods’ work with a set of seed points and an associated in
formation concerning the type of the regions. Starting Ifom 
the seed points, more and more triangles are added to the 
regions until they satisfy the type criteria. Once the regions 
cannot be extended anymore, the rest of the surface outside 
the regions forms the separator set.

A novel algorithm used in Geomagic Studio 8 is based on 
Morse theory. Given a function on a 2-manifold, a special 
structure, the Morse complex can be created by connecting 
corresponding critical points (i.e. maximum, minimum and 
saddle points) of the function. Minimum points will repre
sent the “middle” of the regions, while loops of alternating 
segments cormecting maximum points and saddles will rep
resent region boundaries. From this initial structure a topo
logically consistent natural region segmentation can be de
rived, as was shown earlier in Figure 1 (a). A good summary 
of the method was recently published’ .

A novel algorithm’ used in Geomagic Studio 8 is based 
on Morse theory. Given a function on a 2-manifold, there 
is a mapping between the critical points of the function, 
which defines the primary regions and separator sets. The 
method guarantees that always a topologically consistent re
gion structure is created.

The quality of filter estimations has a fundamental effect 
on the resulting segmentation and indirectly the quality of 
surfaces.

4.2. Computing the extent of the point environment

Two basic methods exist for collecting sample points in the 
neighborhood of a vertex. The first collects points based

132

on their distance from the neighborhood center (n closest 
points). The other method, based on the mesh topology uses 
the connection information of the triangles and takes the 
points that are reachable within k steps.

Neither method can directly be applied since there is no 
general assumption on the distribution of the vertices on the 
polygonal mesh. There are several reasons for assuming un
even arrangement, either related to point capturing or post
processing.

If the data source is a line scanner, uneven point distribu
tion is likely. The points are sampled on the scan lines. If the 
density of the scan lines differs from the density of points 
on the scan lines, the vertices of the mesh will be lined up. 
In this case, the distance-based collection might only collect 
points from a single scan line, which definitely destabilizes 
the estimations.

Post-processed (decimated) triangulations might contain 
triangles of different magnitude around the same vertex. In 
this case, the starting point of the estimation might be far 
from the center of the points collected by a purely topology- 
based method.

One way to overcome these problems is to equally re
sample the surface, for example take a specific point pattern 
and project it onto the triangulation. As a consequence of 
this, the n closest points will result in neighborhoods of ap
proximately the same diameter. This method works fine with 
some of the filters (e.g. planarity), while it is not applicable 
for others, for example those that use normal vectors.

Another solution is to collect faces topologically, and 
post-process the neighborhoods to have the same diameter. 
In this case new sample points should be taken instead of the 
vertices that are too far from the center, while original inner 
points are kept.

4.3. Stability of the estimations

It is often desirable to have information on the precision of 
the estimation. Instable estimations are usually caused by 
noise in the data, outlier sample points, or radical change



Zs. TerékandT. Várady /  DSR using filters

in the surface shape. Some estimations provide an error term 
for fitting, some others define the filter value by the error 
term itself (e.g. planarity).

A general method to estimate stability' takes two neigh
borhoods with a single and a double size. After performing 
the estimation for both sets of points, the estimated values 
are compared. If the two values are close, the estimation is 
considered to be stable. Otherwise, either a better neighbor
hood is computed, or the estimations are thrown out and the 
point is marked as unstable.

5. Conclusion

In the course of digital shape reconstruction a set of fil
ters needs to be used to create a global segmentation over 
a discrete triangular mesh. We discussed how these can sep
arate adjacent regions from each other and help highlight
ing different types of subregions. Computational difficul
ties on how to set related filter parameters have also been 
discussed. The result is a good segmentation of the mesh, 
which is particularly critical for the final surface approxima
tion, independently of whether surfaces using quadrilaterals 
or trimmed patches are fitted.

6. D. Cohen-Steiner and J.-M. Morván, Restricted De
launay triangulations and normal cycle, In: Proc. 19th 
Annu. ACM Sympos. Comput. Geom., 2003, pp 124- 
133 3

7. Zs. Terék, Filters to detect blends and sharp edges. 
Technical Report RGl-TECH-2004-062, 2004 3

8. T. Várady and M.A. Facello, New trends in digital 
shape reconstruction. In: The Mathematics of Surfaces, 
XI, Eds: R.R. Marlin, H. Bez, M. Sabin, Springer, 2005, 
pp 395-412 2

9. T. Várady and R.R. Martin, Reverse Engineering, 
Chapter 26, In: Handbook of Computer Aided Geo
metric Design, Eds: G. Farin, J. Hoschek, M. S. Kim; 
Springer, 2002, pp 651-681 1

10. h t t p : / / w w w . g e o m a g i c . c o m 6

Acknowledgements

This research was conducted within Geomagic, Inc., North 
Carohna'® and Geomagic Hungary, Budapest. Most of the 
pictures were generated by Studio 8, the latest digital shape 
reconstruction program of Geomagic. Partial support from 
the Ministry of Education is also acknowledged (OMFB- 
01979/2002, ADREN).

References

1. P. Benkő and T. Várady, Segmentation methods for 
smooth point regions o f conventional engineering ob
jects, Computer-Aided Design, 36, 2004, pp 511-523 
1, 2, 3, 6

2. P. Csákány, A.M. Wallace, Computation o f local differ
ential parameters on irregular meshes. In: The Math
ematics of Surfaces, IX, Eds: R. Cippola, R.R. Martin, 
Springer, 2002, pp 19-33 3

3. H. Edelsbrunner, Surface Tiling with Differential Topol
ogy, Eurographics Symposium on Geometry Process
ing 2005, 2005, pp 9-11 5

4. G. KÓS, R.R. Martin and T. Várady, Methods to recover 
constant radius rolling ball blends in reverse engineer
ing, Computer Aided Geometric Design, 17, 2000, 
pp 127-160 3

5. N.S. Sapidis and P.J. Besl, Direct construction o f poly
nomial surfaces from dense range images through re
gion growing, ACM Transactions on Graphics, 14, 
1995, pp 171-200 5

133

http://www.geomagic.com6


Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Industrial Styling Based on Free-form Curve Networks

Gergely Várady, Tamás Várady and Tamás Zombori 

Geomagic Hungary, Budapest

Abstract
Creating computer models for very complex, aesthetically pleasing objects is still a hot topic in computer aided 
geometric design. Traditional design techniques are often found dissatisfactory when feature lines drawn by stylists 
need to be converted into standard, CAD models. The technique proposed in this paper puts emphasis on merging 
harui-drawn sketches into a consistent 3D structure, which is transformed into a free-form 3D curve network 
without topological limitations. This curve network uniquely defines an aesthetically pleasing smooth surface, 
comprised o f N-sided patches. Instead o f gridded control point modifications, here the surface model is adjusted 
through its defining curve network. Results are demonstrated by a prototype styling system called Sketches.

1. Introduction

In spite of the enormous progress of CAx technologies in 
the last decades, the design of complex free-form objects 
has remained a difficult task, in particular, when aesthetic 
requirements dominate, such as in car-body design. The de
sign process is split into two phases, (i) Stylists typically 
use conventional graphic tools, such as pencils and rubbers 
to define their concepts. Unfortunately, the related (artistic) 
sketches are not precise, and not consistent in mathematical 
sense; moreover, the collection of curves is often insufficient 
to uniquely define surfaces, (ii) Design engineers use a lim
ited set of operations to convert these sketches into a mean
ingful 3D surface model. This is supposed to reflect the orig
inal concept, but die created computer model usually differs 
from the original one, and many iterations are needed until 
the desired shape is achieved.

Current CAD systems have strong limitations in free-form 
surface design. Most surfaces are created by extruding or 
rotating planar, free-form profile curves. Lofting operations 
provide more generality, but remain still topologically rect
angular. Tbe most widespread free-form surfaces, such as, 
Bezier or NURBS surfaces are also arranged into a topolog
ically rectangular grid. The problem is that real objects con
sists of not only four-sided faces. Though intersections and 
trimming operations can create N-sided surface portions, 
trim-lines are not suitable for modifying the initial surfaces, 
and for shape adjustments the designer has to go back and 
start again. Further difficulties arise when trimmed elements 
need to be stitched together.

A new paradigm has been evolving to overcome the 
above difficulties, where 3-dimensional shapes are created 
by means of a general topology network of free-form, space 
curves. The surface geometry is uniquely determined by the 
curve network. This is a hard task from both mathematical 
and user interface points of view. The curve network has to 
be filled up with such N-sided patches that flow naturally 
and get connected smoothly.

The current papier focuses on problems that fit into the 
above area. Sketches is a prototype styling system for pro
cessing hand-drawn sketches, which need to be converted 
into a smooth, high quality surface model. The design pro
cess is based on a new user tool, called construction box. 
This allows the creation of 3D curves that can satisfy pro- 
jectional constraints simultaneously. Sketches uses a new 
mathematical model, which allows fast, interactive design of 
complex surface models. Section 2 gives a general overview 
on the design procedure and the modelling paradigm. Sec
tion 3 describes the creation of 3D curve networks, which 
approximate aligned 2D sketches being "glued" onto a con
struction box. The mathematical algorithms of N-sided patch 
generation are summarized in Section 4.

134



G. Várady, T. VáradyandT. Z om bori/Industrial Styling

2. Design Process in Sketches

The workflow of shape design in Sketches is shown in Fig
ure 1.

Figure 1: Sketches -  Design Flowchart

We want to create a computer model of an object, which 
is indirectly defined by a set of images containing hand- 
drawn or computer generated sketches of silhouette and fea
ture curves. (If we wish to reconstruct existing objects pho
tographs can also be used.) The images typically show the 
object from different orthogonal views (front, back, right, 
left, top or bottom) and are sufficiently detailed for 3D de
sign.

After noise reduction, edges are extracted using well- 
known image processing operations'*. The images Me 
aligned by scaling, rotation and positioning operations to ob
tain a coherent set of views being mapped onto the faces of 
the construction box.

The pixel information of the images needs to be converted 
into continuous 2D curves represented by markers, which 
will be interpolated by B-spline curves. The 3D curve net
work will be built by matching pairs of these 2D curves. 
Eventually the projections of the final 3D curve network will 
correspond to the feature lines of the original sketch input.

Another option to start design is to retrieve curve network

templates of previously designed models. Designers are usu
ally specialized in certain fields, such as car-body design, 
and the use of parametric templates can save a lot of work. 
In Sketches, users can set various parameters to control the 
actual shape of the template. Of course, a complete car-body 
cannot be defined in this way, but its main characteristics 
like the basic dimensions, the distance between the wheel 
axes, etc. are often sufficient to obtain a good initial curve 
network. The template curves may be projected back to the 
construction box and are tailored until the given images and 
projections get close to each other.

In order to modify or refine a network, users can add, 
remove or reposition individual markers, or perform com
plex curve operations. Once the curve network is satisfac
tory, Sketches fills the selected loops of curves by N-sided 
patches. In this way there is no need to create artificial edges 
due to rectangular topology, that often makes design tedious 
in other styling systems.

Figure 2: Curve network and completed surface model o f a 
car-body

Surface generation in Sketches is exclusively based on 
the curve network and the derived cross derivative functions, 
which ensure watertight connections with G1 continuity be
tween the adjacent patches. If necessary, sharp edges (GO) 
can be incorporated into the patch structure or higher order 
smoothness (G2) can be assured.

The internal representation of Sketches is based on a vari-

135



G. Várady, T. Várady and T. Zombori /  Industrial Styling

ant of Gregory patches. Due to the fact that the structure is 
defined by a few meaningful parameters only, curve and sur
face modifications show up in real-time. Several tools are 
available to measure and analyze the smoothness and surface 
quality of the resulting patches including slicing, isophotcs, 
curvature and environment maps.

In order to export models, the last step is to convert the 
surfaces into a standard format. Sketches uses IGES, and 
the N-sided patches can be very tightly approximated by 
NURBS surfaces.

To illustrate the above process, the final steps of designing 
a concept car are shown in Figure 2. The last few patches 
have been generated by automatically interpolating the rest 
of the unfilled curve network.

In the next two sections we present further details on the 
algorithms applied.

3. Generating 3D curves from 2D input

The first step is to grab basic shape information from the 
2D sketches and convert them into a consistent 3D curve 
network. The images, which may have been taken from six 
orthogonal views (front, back, left, right, top and bottom), 
are mapped onto the faces of the construction box. The ac
tual curve network definition will take place later inside the 
box utilizing so-called guiding curves, which have been ex
tracted from the sketches. At any stage of the process, the 
curve network can be projected to the box providing visual 
feedback about the correlation between the model being built 
and the sketches.

As discussed earlier, these hand-drawn sketches are usu
ally neither precise, nor consistent. This is due to the fact that 
they typically come from different sketches of an imagined 
object, which never existed. In order to get a meaningful ar
rangement, the images have to be properly aligned on the 
faces of the construction box. This requires basic operations 
like image scaling, rotation and translation. After these, fur
ther steps are applied to reduce noise and detect edges'*. For 
curve extraction, the user clicks on the image and Sketches 
will automatically trace the underlying curve. Based on the 
previously computed transformations, 3D guiding curves are 
created on the corresponding face of the construction box 
(Figure 3).

The 3D curves and the curve network can be modified not 
only by moving its 3D markers, but also by moving their 
projective markers sliding on the faces of the construction 
box. A modification on a face affects two coordinates, which 
propagate back to the 3D marker leaving the 3rd coordi
nate unchanged. The projected markers can automatically 
be snapped to two guiding curves; in this way a 3D curve 
can easily be constructed matching two orthogonal views. 
This curve will approximate two sketched -  maybe slightly 
inconsistent -  curves as close as possible. (Figure 4).

136

Figure 3: Guiding curves on the construction box

Another problem is occlusion, i.e. certain feature curves 
are visible only from a single view. To create a correspond
ing 3D curve, the user should first define the basic 3D curve 
network and the related surfaces, then the user can project 
the single view curve onto the existing structure, and incor- 
fwrate it into the network for further refinements.

Figure 4: Snapping a 3D Curve to approximate two guiding 
curves

i



4. Surface Interpolation of 3D Curve Networks

4.1. Continuity Constraints at the Common Vertices

G. Váracly, T. VáradyandT. Zombori /  Industrial Styling

At this point we have a curve network of B-spline curves 
sharing common vertices. The shape of the curves can be 
adjusted by moving their markers and setting the end-point 
tangents. Every loop of curves will be filled by an N-sided 
surface patch. In order to assure smooth transitions it is nec
essary that the patches have the same normal vectors along 
their common border curves. This also implies that at the 
comer points (where three or more patches Join) a common 
tangent plane is defined forcing the tangents of all related 
curves into this plane. In practice, this means that once two 
curves define a tangent plane at a common end point, all the 
additional curves ending there will automatically match this 
tangent plane. The normal vector at this point can turn into a 
design tool, i.e. if needed, it can be freely adjusted, and the 
curve tangents will be dragged accordingly (see Figure 5(a)).

(a) Common tangent plane

(b) Dupin indicatrix 

Figure 5: Continuity constraints

In order to assure higher level (G2) continuity at the cor
ner points, the curvature of the joining curves can also be

made compatible by slightly modifying their first and sec
ond control points. These small modifications can be hardly 
noticed concerning the shape of the curves, but the resulting 
surface will be much smoother. Details of the related simple 
optimization algorithm can be found in Figure 5(b) shows 
the Dupin indicatrix' at a corner point, assuring common 
curvature there.

In special cases, when sharp edges are needed, these con
tinuity constraints can be overridden by the user.

4.2. N-sided Patches

Having a curve network with the above properties, appro
priate cross-derivative functions can be calculated along ev
ery patch boundary, which define the cross-tangents and 
spread over towards the interior of the N-sided patch. The 
cross-derivative functions are computed by purely geomeuic 
(i.e. non-parametric) quantities along the common boundary 
curve. This assures that once these functions are interpolated 
by the corresponding two patches, they will also smoothly 
join each other.

For each curve loop we have to satisfy positional and 
cross derivative constraints. In Sketches a scheme proposed 
by Gregory, Charrot, and Plowmann-'^ has been applied, 
though their concept has been significantly enhanced for 
better internal curvature distribution and to provide fast re
sponse times. In order to understand how Gregory patches 
work we briefly summarize the fundamentals, as follows.

This N-sided patch is created by mapping an N-sided reg
ular polygon in the (m, v) domain plane to the 3D space. Let 
the center of the polygon be the origin and let the vertices lie 
on the unit circle. The edges of the polygon are denoted by 
I'll 0 <  i <  N\ see Figure 6(a).

(a) Polygonal domain (b) Linear projector

Figure 6: Polygonal domain and the linear projector o f the 
corner interpolant

The edges of the polygon are mapped to tlie N border 
curves denoted by C,-. Let us define so-called corner inter- 
polants lQ i,i= l,. . . ,N ) ,  that interpolate not only the C/ and

137



G. Várady, T Várady and T. Zombori /  Industrial Styling

Ci- 1 curves, but also satisfy constraints implied by their as
sociated cross-derivative functions D,- and fl,_ i ■ Every («, v) 
domain point defines a point on the ('* corner interpolant 
Q i ( u ,  v). To get the N-sided patch, we weight these using 
special weighting functions;

A'-l
E (« ,v)=

1=0
( 1)

Using these equations the corner interpolants and the 
weighting functions can be evaluated for every («, v) point 
of the domain and by means of Equation 1 the complete 
N-sided patch can be calculated. Performing this for the 
whole curve network a complete surface model of smoothly 
connected patches can be automatically built up, as was il
lustrated earlier in Figure 2.

Com er interpolants

The /'* comer interpolant (Ö;) can be described by two lo
cal variables The main problem is how to compute
these local coordinates firom a given («, v) domain coordi
nate pair. We can use a linear projector: let us take the 
edge and determine the intersection point of the extensions 
of the two neighboring edges. The intersection of T,- and the 
line passing through this point and (u,v) will determine the 
s,- parameter;

1 “ MCOs2(i — 1)0 —vsin2(i— 1)0
Si = P‘(u,v) = ■ (2)2 — 2 cos 20(m cos 2/0 -t- v sin 2/0)

where 0 =  see Figure 6(b). It follows from the definition 
of the comer interpolants, that // =  1 — s,_i and r,+i =  1 — s;.

Thus Qi is defined in the local (s,,i,) parameter space, 
and it interpolates not only the C,(5,) and Q _ i( i,_ i)  =
C, _ I (ij) border curves, but also the corresponding D, (s,) and
D, _ 1 (/,) cross-derivative functions. We also assume that the 
cross-derivative functions are compatible, so there exists a 
unique twist vector (i.e. mixed partial derivative) at the cor
ner point, denoted by 7).

Then the equation of the corner interpolant is 

Qii^iyli) — U|(5/) +  C/—1 ) — C|(0) +  tlDliSi)

+ Í A - I  (//) - fiöí(O) -  i iA - l  (1) -  SitiTi
(3)

Note; these corner interpolants can be generalized to in
terpolate higher degree cross-derivatives as well.

Weighting functions

The weighting functions form a convex combination, i.e. 
they are non-negative and Xct; =  l,V(u,v).

In order to have a zero effect of the /'* comer interpolants 
along the other N — 2 edges, the following must hold;

a; =
9a,- 9a,- =  0, V(«,v) e  / , / - 1  (4)

There are several ways to define such weighting func
tions, one option is a simple formula proposed by Charrot 
and Gregory^.

P /=  n  ^
H; vy/.i+l

(5)

4.3. Visualization

There are several ways to render the resulting surfaces and 
to verify their quality. These visual modes help to notice if 
continuity conditions are not satisfied or the curvature is not 
evenly distributed. These issues are particularly important in 
aesthetic design. Figures 7 and 8 show objects with slicing 
and isophotes to verify G1 and G2 continuity, respectively. 
In Figures 9 and 10 a curvature map and an environment map 
are shown for global quality verification.

Figure 7: Slicing

Figure 8: Isophotes

138



G. Várady, T. Várady and T. Zomhori / Industrial Styling

References

Figure 9: Mean curvature map

Figure 10: Environment map

5. Conclusion

A curve based method to create digital models of 3D ob
jects has been described. The main difficulty is that the in
put is only a collection of hand-drawn sketches, which in 
mathematical sense only “loosely” define a free-form ob
ject. To obtain a consistent 3D structure a special tool, called 
construction box was introduced. Our method creates a 3D 
curve network, which is suitable to automatically span a 
complex surface, composed of general N-sided patches. The 
enhanced patch formulation provides internal smoothness, 
smooth connections and computational efficiency for real
time modifications. Algorithmic details were given and some 
encouraging results were shown, generated by a prototype 
styling system called Sketches. Future research issues will 
include global fairing of these type of patch complexes and 
developing further tools to adjust the interior of patches.

Acknowledgements

This research was conducted by Cadmus Consulting, Ltd. 
and later by Geomagic Hungary Ltd., Budapest. The project 
was supported by the Ministry of Education, grant num
ber; OMFB-00567/2003. The Sketches prototype system is 
the result of a collective effort by a larger group; authors 
acknowledge important contributions by Zoltán Kovács, 
Volker Weiss and Bence Kodaj, and the group firom the Uni
versity of Industrial Design, Budapest led by Attila Bárkányi 
that tested and evaluated the system.

1. G. Farin: Curves and Surfaces for CAGD, A practical 
guide, 5th Edition, Academic Press, 2002 4

2. P. Charrot, J. Gregory: A pentagonal surface patch 
for CAGD, Computer Aided Geometric Design, Vol 
1, 1984, pp 87-94 4,5

3. D. Plowman, P. Charrot: A Practical Implementation of 
Vertex Blend Surfaces using an n-sided Patch, In: Proc. 
o f the Mathematics o f Surfaces VI, Ed.: G. Mullineux, 
Clarendon Press, Oxford, 1996, pp 67-78 4

4. M. Sonka, V. Hlavac, R. Boyle: Image Process
ing, Analysis, and Machine Vision 2nd Edition, 
Brooks/Cole Publishing Company, 1999 2, 3

5. T. Várady, T. Hermann: Best Fit Surface Curvature 
at Vertices of Topologically Irregular Curve Networks, 
In; Proc. o f the Mathematics o f Surfaces VI, Ed.: G. 
Mullineux, Clarendon Press, Oxford, 1996, pp 411^28 
4

139



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

A general construction for barycentric coordinates in 3D
polyhedra

Géza Kós,'^

* Computer and Automation Research Institute, Budapest; Department of Analysis, Loránd Eötvös Universitry, Budapest
k o sg ezaS sz tak i.h u

Abstract
"We prove a general formula which expresses a point inside a polyhedron with triangular faces as affine combina
tion o f the vertices. The free parameters o f the formula allow to generate all possible weight sets; as a special case 
it provides an explicite formula for Floater’s mean value coordinates in 3D and reproduces the discrete harmonic 
and Warren's coordinates.

Categories and Subject Descriptors (according to ACM CCS): 
elling]: Hierarchy and geometric transformations

.3.5 [Computational Geometry and Object Mod-

1. Introduction

In computational geometry, various applications, like finite 
element analysis or surface parametrisation, need construc
tions of barycentric coordinates in polygons or polyhedra.

Given a polygon or polyhedron V  with vertices V|, . . . ,  v«. 
The goal is to construct real valued coordinate functions 
X i,...,X n  which map the interior (or just the kernel) of V  
to real numbers such that X, X.,(v) =  1 and =  v for
each interior/kemel point v. In some cases V  is assumed to 
be convex; in other cases it is required that the coordinate 
functions satisfy X.,(v) >  0 as well.

Most constructions define some weight functions w; with 
the property

n
X w ,(v )-(v ,-v )  =  0 
i=l

then normalise these functions to get the final coordinate 
functions.

V,+l

X,(v) = vijv)
Wl(v)-(----- hw„(v)’

Of course, for the normalisation it is required that the de
nominator does not vanish.

In the plane, the most commonly used constructions are 
the Discrete Harmonic coordinates Wachspress’ coordi
nates ' and recently Floater’s Mean Value coordinates ■*. Us
ing the notations shown in Fig. 1, the Discrete Harmonic 
coordinates can be defined as

Bolyai etc. w,(v) =cotP,_] -t-coty,-; ( 1)

140



Gém  Kós /  Barycentric coordinates

Wachspress’ coordinates are

=  4  (cotPi + cotY,-i);

finally, the Mean Value coordinates are defined as
a ,_ i/ N W  ' v,(v) =  — I tan - tan !)■

(2)

(3)

All the three constructions have generalisations to higher 
dimensions. In this paper we consider the 3D case only.

In 3D, the vertices of the polyhedron does not have a nat
ural order which could be defined by their indices. Thus,, we 
use the set £  of edges and the set T  of triangular faces. (Both 
Discrete Harmonic and Mean Value coordinates require tri
angular faces.) Edges are represented as pairs of vertes in
dices and triangles are represented as triplets.

For each edge (i,j)  €  £, denote the angle Z(v,-,v,vj) by 
a,-j. For each face (i,j,h )  €  T , denote the dihedral angle 
between faces (v, v,-, vj) and (v, v,-, v/,) by the angle be
tween faces (v, V,-, vy) and (vj,Vi, v*) by Finally, let the 
unit vector of triangle (v,v,-,vy) be n, y and denote the dis
tance between vertex Vf, and plane (v,v,-,vy) by (see 
Fig. 1).

In 3D, the Discrete Harmonic coordinates can be com
puted as

Wi(v)-= |vy-V/,|-COtl)y,Ay. (4)

The Mean Value coordinates ’’ are
' cos tX/jcos ̂ h,ij

(5)

w, (v) :

This construction has been found independently also by 
J. Warren

The Wachspress’ coordinates are generalised to convex 
polyhedra of any dimension by Warren et al. His construc
tion allows faces with more than three sides but have the 
constraint that only three faces meet at each vertex. Denot
ing the normal vectors of the three faces sharing vertex v, 
by mi l, "iî 2 and mi3 such that they point inside, Warren’s 
coordinates are defined as

tvi(v) =
|det(mi,i,mi,2,mj,3)|

((v-Vi)mi,i) • ((v-Vi)m/,2) ■ ((v-Vi)/n;,3)
. (6)

Note that the constraint can be removed easily if vertices 
of higher degree arc considered as degenerate edges. At the 
same time, faces with more than three edges can be divided 
into triangles by diagonals, without changing the coordinate 
functions.

Though formulae (1-6) look slightly different, we demon
strate that they are closely related to each other. We construct 
a general family of weight functions which contains them all 
as special cases. The difference between the formulae can 
be interpreted also as different simplified forms of the same 
equation, with different parameter sets.

2, The integral of normal vectors on surfaces

The following well-known fact will be our main tool.

Theorem 1, Let S be a closed, oriented, piecewise smooth 
surface of dimension V — 1 in the space and assume that 
its area is finite. Then the integral of normal vectors on the 
entire surface, f^dS  is 0.

Figure 3: Integral o f normal vectors o f a surface

The theorem is a direct corollary of the general Stokes’ 
theorem, but various attractive proofs exist which use more 
elementary tools. Now we show two of such proofs; the first 
one works only in 2D, the second one works in any dimen
sion.

Proof in 2D. Consider S as a parametric curve [0,1] —> R^.
For any vector x, let x 
degrees. Then

be the same vector, rotated by 90

Proof in any dimension. Take an arbitrary unit vector u 
and a hyperplane U which is perpendicular to u. Consider an 
arbitrary surface piece of area vector dS, and project it to the

141



Géza Kos /  Barycentric coordinates

plane U. The signed area of the projection is exactly u ■ dS 
(see Fig. 4).

Figure 5: Generalising the Mean Value coordinates, (a) In
tegrate unit vectors; (b) integrate normal vectors o f a closed 
curve

Projecting the entire surface S to the hyperplane, every 
point of U is covered the same number with positive and neg
ative sign. Therefore, the integral of all projections is zero, 
fgu dS = u-fgdS = 0. This is true for all unit vector u which 
implies J^dS =  0. □

Theorem 2. Let S be an oriented, piecewise smooth surface 
of finite area. The integral of area vectors on S depends only 
on the boundary. In other words, if 5i and 52 are two surfaces 
with the same boundary then dS =  dS.

Proof. Invert the orientation of 52 and glue the two sur
faces together to obtain a closed surface 5]+2- Then dS — 
k d s  = ls , , ,d s  = o .n

3. The general formula in the plane

In this section we introduce the general formula for weights 
in the 2D case. (The results are introduced already in ® in a 
little more computational way; now we focus on more intu
itive geometric approaches.)

3.1. Generalising the Mean Value coordinates

To construct the formula of the Mean Value Coordinates, 
Floater '* computes the integral of unit vectors in the angle 
domain Z(r,-, v,v,.)-i) and expres.ses it as a linear combina
tion of Vi — V and — v (see Fig. 5/a). The sum of all such 
expressions —  the integral of all unit vectors — is always 
zero and the resulting weights are always positive.

The idea of the generalisation is the following. Replace 
the unit circle with a closed curve C which surrounds v. For 
each index i, denote by pi the intersection point of C and the 
half line (r, v, ). (In case of more intersection points, choose 
one arbitrarily.) For each index i, compute the integral of 
normal vectors on the curve segment (p, , p,+i) and express

it as a linear combination of v; — v and v,+i — v (Fig. 5/b). By 
Theorem 1, the sum of all integrals is zero. Summing up the 
linear combinations for all i we obtain some real numbers 
w i,.. ,,Wn such that J^wfvi — v) =  0.

By Theorem 2, the curve segments can be replaced arbi
trarily, only points p, must be preserved. As an opposite way, 
we can choose points p,- first then connect them arbitrarily. 
Moreover, it is not required that p; lies on the half line (v, v,); 
it can be placed anywhere on line (v, v;).

To place point p,- we introduce a real parameter, the signed 
distance between p; and v, which is denoted by d/. The dis
tance is positive on the half line (i', v,) and negative in the 
opposite direction. These distances will be the free parame
ters of the general formula.

To construct curves or polygons which connect the points 
p i,.. .,P n , several reasonable ways exist. One of them is 
shown in Fig. 6 which walks around the star of centre v and 
points Pi. We use this curve to prove our general weight for
mula. Denote by n; the unit vector which is perpendicular to 
v; — V, in counter-clockwise direction. The integral of normal 
vectors (pointing outside) in the curve segment (p,',p,+i) is 

fPi+l
dC = dini-di+\ni+i =-LPi

V;+i-V V,-V
— cosa,--^-----

n+i
V/-V V;+1-V--------COS a," -42̂ !-----

n  _______ G+i
sin a.

Ji+l , \  Vi —P (  di7 ^  - d ,  c o ta , ------- 1 ( ------
m a ,  J  ri \sm a ,-

4+1 cota; Vj+\ - V
n+\

Summing up these expressions, we obtain the general for
mula.

142



Géza Kós /  Barycentric coordinates

3.2. Three special cases

Equation 8 is very useful in some special cases. The right 
angles and cyclic quadrilaterals enable attractive elementary 
geometric tools to avoid long computation. In this section 
we show three important special cases.

Theorem 3. Let d \ , . . ,,dnhe arbitrary real numbers and de
fine

di.w i— — ( — £/, cota, —d, cota,_i +
r; \sina,- sin (7)

for all i. Then — v) =  0.

An alternative connecting curve is shown in Fig. 7. For 
each index i, put a line through pi which is perpendicular to 
Vj — V and denote the intersection point of the I'th and (i +1 )th 
line by . Then the integral of normal vectors on the polygon 
segment (p,-,p,+i) is

r   ̂ I i
d C  =  (pi  - q i )  +  (qi -  P i+ 1 =

- /Jpi

n  n+\
(The numerators are the signed distances between qi and the 
vertices p, and p,+i. respectively.) By summing up, we ob
tain the alternative formula for the same weights:

{ q i - d i - l h i  ^  ± \ q i - q i - i \
(8)

This result shows that the weights are po.sitive if and only if 
the polygon (^i , . . . , is not self-intersecting.

In practical applications, the parameters d,- are functions 
of V which can depend on v; and have a geometric meaning 
as well. To generate formulae (1-5), d, will be a very simple 
function of r,-.

Figure 8: (a) Discrete Harmonic coordinates: di =  r;. (b) 
Mean Value coordinates: di — 1

The first example is <7, =  r,-. As it can be read directly from 
Fig. 8/a, — (g,-— i )«,■ =  ri{cotP,_i Tcoty,) Thus we

143



Géza Kós /  Barycemric coordinates

obtain the Discrete Harmonic coordinates, w,- =  cot p;_ i +  
cotYi-

The second example is Floater’s Mean Value coordi
nates Choosing <i, — 1, we have \qi — <?,_i | =  tan +  
tan ^  (see Fig. 8/b). Hence, this choice of parameters pro
vides Wi =  i  (tan +  tan ^  ).

(a) V/+1

(b)

Figure 9: Wachspress’ coordinates: d,- =  1/r,-. (a) original; 
(b) inverted configuration

The last example is Wachspress’ coordinates '.  Choose 
d; --= 1/r,. Point p; is obtained from v, by inversion (see 
Fig. 9) and points q; and are the inverses of the foot- 
points of V to the lines and (v/,v,_i), respectively.
Then =  ^(cotP; +  coty,_i) and we obtain
Wachspress’ formula, w; 4 (c o tP ,+ c o tY ,_ i) .

3.3. Generality of the formula

Using the alternative construction (Fig. 7), the parameters 
d i , . . . ,  dn can be reconstructed easily from the weights.

Theorem 4. Let w i,...,W n  be real numbers such that 
SiLi — v) =  0. Then there exist real numbers d \ .. .,dn 
for which Theorem 3 generates the weights w, .

Proof. Construct a closed polygon {qi,.. - ,qn) where q; — 
=  Wi ■ (v/ — v)"*“. For each i, let pi be the intersection of 

lines (qi^i,qi) and (v, v,). Finally, choose di =
Starting from the parameters di, the construction builds the 
same points q; and the same weights w,-. □

Note that the polygon ( q \ , . .  . ,qn)  can be translated arbi
trarily, thus our freedom is of degree 2. This is consistent to 
the number of variables and conditions; we have n free pa
rameters while the system of all weight sets form a linear 
space of dimension n — 2.

4. The general formula in 3D

To generalise Theorem 3 to 3D polyhedra, let us start with 
the Mean Value coordinates again. For an arbitrary face 
(i,j,h )  €  T , consider the spherical triangle spanned by tbe 
directions v, — v, vj — v and — v. Take the integral of unit 
vectors in the spherical triangle and express it as a linear 
combination of vectors v; — v, vj — v and — v. Since the 
integral vector lies inside the trihedron spanned by these vec
tors, the three coefficients will be all positive. Summing up 
the coefficients for all faces, we obtain a linear combination 
of vectors v,- — v with positive coefficients. On the other hand, 
the sum is the integral of all unit vectors which is 0.

Figure 10: Idea and generalisation in 3D

Though the idea can be transformed easily, the computa
tion becomes harder. Computing the integral of unit vectors 
on a spherical triangle needs more thoughts. A solution to 
this problem has been shown in ’ where the spherical trian
gle was replaced with the three bounding circle slices. Be
fore going into details, let us introduce the generalisation.

Replace the unit sphere with an oriented, closed surface 
S  which contains v in is interior (see Fig. 10). Replace the 
spherical triangle with the intersection of S  and the trihe
dron bounded by the angle domains (v,-, v, vj), (vj, v, v;,) and 
(vfi, V, V,) — denote it by /, and take the integral of normal
vectors on this curved triangle. (For the simplicity, assume 
that Ti j^i, is really triangle shaped.) The sum of all such inte
grals is the integral of normal vectors on S  which is zero by 
Theorem 1. Therefore, we get a set of weights w,- such that 
■^Wi{vi-v) = 0.

For each edge (i, j)  €  £, consider the intersection of the 
interior of S  and the angle domain (v/, v, vj). Denote the area 
of this “slice” by A, j  (sec Figure 11. By Theorem 2, the

144



Géza Kós /  Barycentríc coordinates

XoJ,(v; — v) =  0. Then the parameters Ai j  in Theorem 5 can 
be chosen such that (10) generates these weights, w,- =  to, for 
all i.

integral of normal vectors is the same on 7) and on the 
union of the three slices. Hence,

I  dS = A j ^ h t i +  A ijr iij.

We want to express this as x • (v,- — v)+ y • (vy — v)+ z • ( — v) 
with some real numbers x,y,z. Taking dot-product with nj^h,

(^y,/i^y,/i “f  T Ayy/l/j)

=  (•*• (v,- -  v) + y  ■ (vy -  v) +  z • (v;, -  v)) ■ ny,A,

Ay,A -  Aa,, cos 5A,,',y -  Ayy cos 6y,A,; =  X • if;. 

Therefore,
_  Ay,A - A a,,COs Sa,,j  -/4,-,yCOs5y,A,i

di
(9)

In the final formula, the coefficient of (v,- — v) is the sum of 
all such expressions.

Theorem 5. For each ( i , j )  € £, let A jj  be an arbitrary real 
number such that/lyy =  A, y and define

Ay,A A/i i cos ̂ h,ij ~  Af,y cos 8y,A,f _ _ _ _S
i,A: (iJ,h)eT

( 10)

Then Jl; w,(v; — v) =  0.

Proof. For each triangle (i,j,h )  e  T , take the vector 
A ijrtij ^-Aj^h^j^h +AA,,nA,; and express it as a linear combi
nation of (v; — v), (vy — v) and (va — v); the same formula (9) 
is obtained for the coefficient of v,- — v. Therefore, (10) is the 
sum of coefficients of (v,- — v) for all triangles. On the other 
hand, for each edge (/, y), vectors A/,yn,-,y and Ay /ny,,- elimi
nate each other and the sum is always zero. □

Note that for n vertices, the weight sets form a linear space 
of dimension n — 3 while the number of free parameters is 
larger, 3n — 6.

Theorem 6. Let be real numbers such that

Proof. Construct sequences of vertex indices, t i , . . . ,  in-3, 
j \ , . . . , j n -3  and h \,...,h n  with the following properties:
•  e T i s a f a c e ;
•  For each 1 < k < n  — 3 ,{it,jk ,h]c)€T i& a  face such that

ik,ik G {hk+ \,...,hn}h \iih i,^  {hk+ i,...,hn}.
The construction can be done inductively (see Fig. 12). First, 
select an arbitrary face (v„_2, v„_ i , Vn). If 1 < k <  n — 3 and 
hic+i,...,hn are already defined, consider all faces spanned 
by vertices va,,̂ , , . . . ,  va„. This is not the complete polyhe
dron, so there exists at least one triangle which has two ver
tices among va* ^ , and one vertex outside. Take such 
a triangle and set i’a, jk and /i* to its vertex indices, according 
to the conditions.

We will use only parameters (k =  1 ,... ,n — 3); set 
the remaining parameters to 0. The parameter /Ijy.y* affects 
four vertices, the vertices of the two triangles which share 
the edge (ik,jk)- These four vertices are v,,, vŷ  and va,, and a 
fourth one in the set {va+ i , . . . ,  v„}. It is important to remark 
that the coefficient of in (10) is 1 /£ÍAt which is always 
positive. In other words, the matrix of the linear transform

(A,II,21, • ••,
is a triangle matrix and the diagonal elements are all positive. 
Therefore, the parameters A,y,yj can be chosen to obtain the 
requested weights OUai > • • ■, Wa„ -3 ■

Now we have a set of parameters A,-,y such that waj =  (Oaí 
for k =  1 ,.. ..  n — 3. To complete the proof, the same must be 
shownforn — 2 <  k <  n. Since

n n
X  (''A* -  >') =  X  “ At (vAt -  v) -- 0
/k=l k=\

and the first w — 3 terms are the same, we have
nX (“ A ,-« 'A t)(V A t-v)=0.

k^n- 2

But the vectors va,_ j — v, va„_, — v and va„ — v are linearly 
independent, so this implies cOAt ~  ‘•'At =  0 for k >  n — 2 as 
well. □

145



4.1. Mean Value Coordinates

Géza KÓS/Barycentric coordinates

Hence, x = \ \ v j  — v;,| cotdy,/, ,- and

Again, we show three special choices for the parameters 
A ij  which generate known weight constructions. The first 
is Mean Value coordinates. The choice is of course the area 
of the circle slice:

^i,j =

Substituting these parameters, we obtain the explicit formula 
for the Mean Value coordinates:

^j,h ~~ ^i,j t'OS ̂ j^h,iH’, =  ^
j,h- {i,j,h)&T 2di

( 11)

Though from this form it is not obvious, from the con
struction we already know that all fractions in (11) are pos
itive. Of course, this can be proved directly, too. As it was 
shown in if we project the spherical triangle to the plane 
(v, vy,v*), the area of the projection — which is positive — 
will be exactly /, — a /,, cos 6;, y  — aycosfiy

4.2. Discrete Harmonic Coordinates

Similarly to tlie 2D case, let us choose S  to be the polyhe
dron formed by the faces in T. In this case

v,| -s in ay .

To compute the coefficients, consider an arbitrary face 
{i,j,h )  and its area vector m (see Fig. 13).

The area of triangle (v;,vy,v/,) is \m\ =  \\vh — v 
We need real numbers x,y, z such that m =  x(v, - 
v) -t-z(v* — v). Taking dot-product with nj f,,

JI' sin Vj i,,i ■
v )+ y { v j-

X \Vj -  Vk]cOV»ĵ Hd- 
j,h'. (iJA)&T

4.3. W arren’s coordinates

To reproduce Warren’s weights, consider a convex polyhe
dron where the faces may have more than 3 sides but only 3 
faces meet at a vertex. Let v,- be an arbitrary vertex. Let m, y 
(y =  1,2,3) be the normal vectors of the three faces contain
ing Vi. Denote by /,y  and e y  the foot-points of v to the three 
faces and the edges starting from v,-. These points lie on the 
sphere of diameter (v, v,) (see Fig. 14/a).

Figure 14: Reproducing Warren’s coordinates, (a) Foot- 
points; (h) inverted points and face o f dual polyhedron; (c) 
slice o f dual polyhedron

Apply an inversion from point v and denote the inverted 
points by €y-, /y- and v[ (Fig. 14/b). These points lie in a 
plane which is perpendicular to {v,Vi) and points e,y lie on 
the sides of the triangle Constructing this tri
angle for all vertices, we obtain a dual polyhedron which 
has vertices instead of faces — the inverted foot-points //y 
— and triangular faees instead of the vertices — each face is 
perpendicular to the corresponding line (v, v,).

The volume of tetrahedron (v,//j i / j y , / /3) is

v , f i ,2 - v j i^ 3 - v )  ='/ol{v,fiufÍ2,fí,3) =  Tdet(/i,i

■ d h , i , j= m n j^ h  =  h l 'C O S d y ,/ ,y =  --|vy-V ;,|-i/A ,yyC O tl3y ,y ,-.
det(m;^l,m;,2 ,W,y3 )

6 • |/i,l -  v| • l/iy -  v| ■ l/iy -  v|

146



Géza Kós /  Barycenlric coordinates

which is exactly 'g of Warren’s weight. On the other hand.

öa«'ea(/;'i,/;'2,/;'3)- |v i - v | =

area(/-i,/;'2 ,/-3)
3r,-

If we choose surface <S to be the dual polyhedron, then 
Wi{vj — v) is the area vector of face and
w,|vj — v| =  w,r, is the area. The dual polyhedron produces 
the halves of Warren’s weights.

At this point constraints can be changed to our case. Al
low vertices of degree more than three — replace tetrahedra 
i''itfí,i’fí,2’f!,2) pyramids — and subdivide faces hav
ing more than 3 sides into triangles. To generate Warren’s 
weights, use the slices of the dual polyhedron, shown in 
Fig. 14/c. (Note that in some cases this quadrilateral is self- 
intersecting and the area is the difference between the areas 
of the two bounded regions.) As an easy computation shows, 
the area can be expressed as

AiJ ^
1

rirj sin a ij ^  T r i c o t  a,;.

5. Summary and final remarks

We introduced a general family of weights in convex 3D 
polyhedra with the property — v) =  0. The free pa
rameters allows to generate all possible weight sets. As spe
cial cases, we reproduced the Discrete Harmonic coordi
nates, Floater’s Mean Value coordinates, Waehspress’ coor
dinates and Warren’s coordinates.

Due to .space limitations, many subtopics, like continu
ity and extension problems have not been addressed. In the 
following paragraphs some results in these topics are listed 
which will go to separate papers.

The idea of the general formula, tlie statements and proofs 
of Theorems 5 and 6 and the special parameter settings for 
the three known constructions can be changed to work in 
any dimension. For the general formula in A-dimension, 
faces and edges will be replaced by (A — 1) and (A — 2)- 
dimensional sub-faces and there will be a parameter for each 
(A — 2)-dimensional face of V.

The general constructions. Theorem 3 and Theorem 5 can 
be extended outside the kernel. In the plane, the sign of an
gle a, must match the orientation of triangle (v,v,,v,q.]). In 
3D. the sign of djjj, must match tlie orientation of tetrahe
dron (v,v,,vy, V/,). However, the formula is singular on the 
extensions of the sides/faces of P.

For the planar case Hermann ** proved that Mean Value 
coordinates can be extended to the entire plane. (The proof

works in more general cases as well when V  is replaced by 
a set of closed polygons.) If the parameters are restricted 
to be continuous single variable functions, rf, =  f in ) ,  the 
only construction which can be extended continuously to the 
entire plane is the Mean Value coordinates.

Hermann’s result can be generalised to 3D — and higher 
dimensions as well. The recent paper of Ju, Schaefer and 
Warren considers the properties of the Mean Value coordi
nates in 3D. On the other hand, if the parameters A ij  are
restricted to depend only on the geometric properties of tri
angle (v,v,-,Vj), there exists no more such weight construc
tion.

References

5.

6.

7.

8.

9.

E. L. Waehspress. A rational finite element basis. Aca
demic Press, IQT.S.

2 . r J. Warren. Baryccntric coordinates for convex poly
topes. Advances in Computational Mathematics, 
6(2):97-108, 1996.

A. Iserles. A first course in numerical analysis of dif
ferential equations. Cambridge University Press, 1996.

4. M. S. Floater. Mean value coordinates. Computer- 
Aided Geometric Design, 20(1); 19-27, 2003.

Solutions to advanced problems. Mathematical and 
Physical Journal for Secondary Schools (KöMaL), 
2004(2):54-57, 2004

M. S. Floater, K. Hormann, G. Kós. A general construc
tion of baryccntric coordinates over convex polygons. 
Advances in Computational Mathematics, accepted in 
2004

M. S. Floater, G. Kós, M. Reimers. Mean value co
ordinates in 3D. Computer-Aided Geometric Design 
22(7):623-631, 2005

K. Hormann. Baryccntric Coordinates for Arbitrary 
Polygons in the Plane. Institute o f Computer Science, 
Clausthal University o f Technology, Technical Report 
IfI-05-05, 2005

,T. Ju, S. Schaefer, J. Warren, Mean value coordinates 
for closed triangular meshes, ACM Transactions on 
Graphics 24(3):561-566, 2005

147

i !



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Properties and Applications of Neighborhood Sequences

András Hajdú', Lajos Hajdu^^ and Tamás Tóth'

' Faculty of Informatics, University of Debrecen, H-4010 Debrecen, P.O. Box 12.
 ̂ Institute of Mathematics, University of Debrecen, H-4010 Debrecen. P.O. Box 12.

Abstract
The wide-range used distance measurement in digital image processing is the Euclidean norm nowadays. This 
is defined over the set o f the real numbers that is why it does not suit the digital approach, perfectly. The use of 
neighborhood sequences is an alternative to the Lp metrics and because they are based on the set o f integers it 
is more suitable for digital thinking. In this paper we summarize some properties o f neighborhood sequences and 
their applications in image processing methods.

Categories and Subject Descriptors (according to ACM CCS); 1.4.6 [Image Processing and Computer Vision]: Seg
mentation 1.5.3 [Pattern Recognition]: Clustering G.2.0 [Discrete MathemaUcs]: General

1. Introduction

The wide-range used distance measurement in digital image 
processing is the Euclidean (L2) norm nowadays. As it is 
defined over the set of the real numbers, it only rarely pro
duces a round result and that is why it is not too capable 
to the digital approach. The use of neighborhood sequences 
can be an alternative to the set ofL,, metrics n, is
Neighborhood sequences are based on integers and they suit 
perfectly the digital approach.

In this paper we summarize some theoretical results on 
neighborhood sequences, like their geometric properties and 
certain approximating problems. We also illustrate some 
applications using neighborhood sequences. We show that 
most image proeessing methods that use distance functions 
are able to handle neighborhood .sequences to measure dis
tance. Moreover, the set of neighborhood sequences can 
make the image processing more flexible, because the same 
method can produce different results with only changing the 
sequence.

The structure of the paper is as follows. We introduce 
our notation in Section 2. In .Section 3 we summarize the 
geometric properties of neighborhood sequences " . I n  Sec-

Research was supported in part by the OTKA grants F043090, 
T042985 and T048791, and by the János Bolyai Research Fellow
ship of the Hungarian Academy of .Sciences.

tion 4 we di.scuss how the Euclidean metric can be approx
imated by neighborhood sequences Finally, in .Section 5 
we review classical image processing methods using neigh
borhood sequences

2. Basic concepts and notation

Rosenfeld and Pfaltz introduced the concept of octago
nal distances by mixing the 4- and 8-neighboring relations 
in 2D. In Yamashita and Ibaraki introduced the concept of 
general periodic neighborhood sequences in Z". In this sec
tion we recall some definition and notation from Das et al.  ̂
and from Fazekas et al.  ̂to define neighborhood sequences.

2.1. Periodic neighborhood sequences

Let n G N, and let p,q & I f  be two points in Z". Denote by 
Pr,(p) the I'th coordinate of p. Let m G N, 0 <  m < n. the 
points p and q are called m-neighbors if the following two 
conditions hold;

•  I Pri(/t) — Pr((i)| <  1 for all I < i <n,
•  lL l |P r , ( p ) - P r , ( i ) |< m .

The sequence B =  (6(1)),^], where b{i) G { l,. .. ,n }  for all 
i G N is called a neighborhood sequence in nD. B is called 
periodic if for some / G N,b(i +  /) =  b(i) for all i G N. The 
brief notation of a periodic neighborhood sequence with a 
period I is B — {b{l),b (2 ),...,b (l)} . If the period length is 
1, the neighborhood sequence is called constant. In further

148



András Hajdú, Lajos Hajdú and Tamás Tóth /  Properties and Applications o f  Neighborhood Sequences

investigations we denote the set of /t-dimensional periodic 
neighborhood sequences by S„.

2.2. Distance measurement

and B £ Sn. The point se- 
= q, where p ,_ i and pi are

Let p and q be two points in ! 
quence p = po,Pi,P2,---,Pm  
b{i) neighbors, called a 0-path from p to q o i  length m. The 
B-á\&imced{p,q-,B) between p and ij'is the length of a short
est Z?-path between them.

A natural algorithm to measure distance by neighborhood 
sequences is presented in It is summarized as follows.

Let p  and q two points in I f ,  and B — 
{b{l),b{2) ,...,h { l)}  an n-dimensional neighborhood 
sequence.

1. Leta:= (x(1),a:(2),. .. ,Ai(n)) be the non-ascending order
ing of I Pr, (p) -  Pr, ( i)  I for 0 <  Í <  n.

2. In every step the first b(i) coordinates of x  should be de
creased by 1.

3. The coordinates of the new x are rearranged into non
ascending order.

4. The second and third steps should are repeated until every 
coordinate of x  becomes 0.

The distance function generated by neighborhood se
quences are not metrics in general, as the triangle inequal
ity is not always satisfied. This is shown by the follow
ing example. Let p — {0,0),q =  (1, l ) ,r  =  (2,2) G 7? and 
fi =  {2,1} be a two-dimensional periodic neighborhood se
quence. Then we have d{p,q,B) = d{q,r;B) =  1, however, 
d{p,r,B) = 3; see Figure 1.

(a) (b) (c)

Figure 1: Example for a neighborhood sequence which does 
not generate metric; (a) d(p,q;B) = l,(b ) d{q,r;B) = I, (c) 
d{p,r;B) = 3.

3. Geometric properties of neighborhood sequences

In this section we give an account of the results of A. 
Hajdú investigated in the way neighborhood sequences 
spread in the digital space from a starting point of Z” . The 
spreading is translation invariant, so we may choose the ori
gin O as the starting point. Let B be a neighborhood se
quence in nD, and for i  e  N let

B k ^ ^ { p e Z "  :d (0 ,p ;B )< k } .

So Bj is the region occupied by B after k steps. Let W(B*.) 
be the convex hull of B^ in M”.

Let B £ Sr, and I: € N. If a point p £ 7" with co
ordinates ipi,P2 ,---,Pn) belongs to B ,̂ then the coordi
nates ,52Pí2i ,^nPi„) also belong to B*, where dj =
± l ( y =  l , . . . ,n ) ,  and (ij,!2 ,...,in ) is an arbitrary permuta
tion of (1,2,..

Let k{i) denote the number of i values among the first k 
elements of B € Sn-

The vertices of S* are exactly those points, whose coordi
nates are the permutation of the values

(5l i l , h.q2,- ■ ■, ?>nqn) =  I 5i X  A(i), §2 X  *(').> • • • i ^nk{n] 
\  /= l ,=2

A, Hajdú performed an investigation in I?  and 7?, see ” . 
The analysis could be done in higher dimension and also in 
other kind of digital spaces (that are based on hexagonal or 
triangular neighborhood relation).

3.1. The 2D case

Das and Chatterji showed that for every 2D neighborhood 
sequence B, H{Bf) is always an octagon, see They calcu
lated the coordinates of the vertices of the octagon, and also 
its sides based on the ratio of 1 and 2 values among the first 
k elements of B.

The well-known cityblock and chessboard motions can be 
represented with constant neighborhood sequences {1} and 
{2}, respectively. In Figure 2 we show the octagons occu
pied by these neighborhood sequences, and also by {12}.

Let B be a 2D neighborhood sequence, x(k) the length of 
the horizontal-, and y(k) the length of the inclined sides of 
the octagon H{Bifj, illustrated in Figure 2. Moreover, denote 
by P2D{k) the perimeter and by V2o{k) the area of the oc
tagon, respectively. Because of symmetry the length of the 
horizontal and vertical sides are equal, and this holds for the 
inclined sides.

m

(b)

Figure 2: Octagons occupied by 2D neighborhood se
quences; (a) B = {!}. (h) B =  {2}, (c) B — {\2};from

Using the above notation the following relations hold:

•  x{k) = 2k{2);
.  y{k) = V 2k{iy,
•  P2D{k) = 4 iV 2k{l) + 2k(2));
•  V2D{k) =  2{k( 1 )2-I-4k(\)k{2) -F2k{2)^).

For proofs see ’ ‘.

149



András Hajdú, Lajos Hajdú and Tamás Tóth /  Properties and Applications o f  Neighborhood Sequences

3.2. The 3D case

In 3D one can see that if Ő £  ^3  and A: G N, then the region 
H(Bic) is a polyhedron with at most 48 vertices, 72 edges and 
26 faces. The vertices can be obtained by permuting the co
ordinates (5i (!:(1) +  k{2) -f k(3)),52{k{2) + k(3)), 83^(3)).

In our next examples we show the polyhedra obtained 
with neighborhood sequences containing one, two or three 
types of elements, see Figures 3 ,4 and 5, respectively.

(c)

Figure 3: Polyhedra occupied by constant 3D neighborhood 
sequences; (a) B = { \} , (b) B =  {2}, (c) B =  {3}; from

Figure 4: Polyhedra occupied by 3D neighborhood se
quences; (a) B = {12}, (b) Ö =  {13}, (c) B — {23}; from 
11

Figure 5: Polyhedron occupied by the 3D neighborhood se
quence B = {123}; from

By symmetry, the sides of H{Bif) for a B G S3 can have 
at most three different lengths. They are indicated by x{k), 
y{k) and z{k), respectively, as it is shown in Figure 5. The 
length of sides, the surface Pzoik) and the volume VjD{k) 
arc computed as follows;

.  x{k) = 2A;(3);
•  y(k) =  V 2k{2);

•  z(k) =  \/2fc(l);
•  P-^oik) =  6 /oct +  l2Prec +  ^Phex’ where 

Poet -  2ik{2)^ +  4{k2)k{3) -h 2{k{3f),  
Prec=-2V2k{\)k(3),
P h e x = ^ { k il) ^  + 4k(l)k{2) + k{2 fy ,

•  V'3p(fc) =  +  1 2 ^ = = ^  ^ ^ PhaHiia   ̂where
tioct =  /t(l) +  A:(2) +  /t(3),
Hrec =  ^ { k { \ )  +  k{2)+k{3)),Hrec =  ^ { k { \ ) + k { 2 )  +  
k{3)).

For proofs cf. again " .

4. Approximation of the Euclidean measurement

In this section we sum m arize some results from about the 
approximation of the Euclidean distance Z.2 in with digi
tal distances generated by neighborhood sequences. We dis
tinguish two types o f approximation:

•  finding a digital m etric if (A) which approximates L2 best,
•  approximating Lo from below.

To handle these problem s, we compare the regions occu
pied by a neighborhood sequence A G i ’2 with the Euclidean 
disks. We use the notation introduced in Section 3. Further, 
let

=  {? G ; \q\ < k}

and

=  {^ G \q\ < k}

denote the disks of radius k in and R^, respectively. The 
sets Ag and 0;t are called the k-disks of the distances d{A) 
and L/z, respectively.

To decide how a digital neighborhood sequence approxi
mates the Euclidean distance Li on Z", we compare the k- 
disks A* and O]̂ . A natural error function could be the num
ber of integer points in the symmetrical difference A/t y  Og. 
However, there is no exact formula for the number of integer 
points inside Og. So we compare //(A*) and G*, and choose 
A to minimize the area of H{Aifj O/̂ . As it turns out, for 
every k G N the same A G ^2 can be chosen to minimize this 
area. This A can be regarded as the one that approximates Lz 
best.

L. Hajdú and A. Hajdú performed several types of approx
imation in

Problem 1. Find a neighborhood sequence A^’* G S2 such 
that for every B S S z  and k G N

Area(H(A|['^) v  Gg) < Area(/7(B*) v ^ t ) -

Problem 2. Find a neighborhood sequence A G Sz such 
that //(Aj^^) D Gk for every k G N and S G Sz, 7f (B^) D G  ̂
implies that

Area(//(A®) \  Gt) <  Area(/f (B,t) \G*).

150



András Hajdú. Uijos Hajdú and Tamás Tóth /  Pw penies and Applications o f  T/ei^hhorhood Sequences

Fiiiure ö illusiraies Problems l and 2.

/  \  
r ^

\  /
Figure 6: The error of approximation: ta) general case, (bl 
when H[AC Oî .

Problem 3. Find a neighborhood sequencer! ' S i’2 such 
that .A for every A: € N, and if Ő 6 Ss with 3  Oj-.
then 2  A' 3)

For any v £ R, let [.vj denote the largest integer which is 
less than or equal to .r, and ;.vi the smallest integer which is 
greater than or equal to c. The next result gives a solution to 
Problem 2.

Theorem. Let A = ( u ÍTi be the unique neighbor
hood sequence for which A(2 ) -- k { \2  -  l 2  (/; £ Nl. that 
IS

a"~'(i) -  Á’( V 2 — I )1 t '"(/ ■ Hv: I i i e S ) .

Then W(A/ ) 3  t'2 for every if £ N. and Ö £ iS. //(B*) 2  G* 
implies that

\A f" ) \Oi^) 2  Area(//iB^J \0/:).

For the proof see

The following result solves Problem 3.

T'heorem. Let A be the unique neighbor
hood sequence for which k(2) — k{\'2 -  I )j (k £ N), that 
is

a ■’ '(;■) rr [/(v2  -  I )J -  f i -  l)(v 2 -  I 1 [i £ N).

Then for every k £ O;. C T i(A f) .  Moreover, if B £ Ss
such that and O/f C for some /c £ N. then A f  C B*.
For the proof cf. again

The distance function d(A ' is the best one to approxi
mate Li from below; that is for any B £ 5t, if

d[q,r:B] < L i{q .n  for any q ,r~ Z ~ .

then

diq.  r\B)  < d(q.  r: A 3L for any r/. r £ 2  .

Because the solution of Problem I would need the intro
duction of further complicated notation, we omit the details. 
For the solution see

5. .Applications in image processing

In .Section .3.1 we investigate some classical digital image 
processing methods in which neighborhood sequences can 
be used, while in Section .3.2 we introduce a new approach 
to iinaae database retrieval. This section summarizes

5.1. Indexing and segmenting color images

In image processing we usually work with images with 
three color components as red. green and blue; this is called 
RGB color representation. Every component is an integer in
0.2.55|. We use the 24-bit RGB cube, that is the domain be
tween black= (0.0.0) and white= 123.5.2.5.3.25.3). We con
sider the points in this domain as colors. Thus we can mea
sure distance between colors with neighborhood .sequences. 
The investigated methods are the following:

• the fuzzine.ss method,
• region growing.
• clustering.

Furthermore, we present a simple tool, the fuzziness his
togram. which is to make the choice between neighborhood 
sequences easier.

The fuzziness method. The procedure selects those pixels 
which are within a given distance k to one or more initially 
fixed .seed colors. This method is implemented in Adobe 
Photoshop, where it is referred to as the "Fuzziness” option 

The result of the fuzziness method highly depends on the 
chosen seed colorls), threshold and neighborhood .sequence, 
see Figure 7.

Figure 7: Fuzziness from the initial seed colors: (a) Origi
nal. (b) B --- {1112}, (c) B (31 I }, (d) B {3}.

Region growing. To obtain a connected region, we can in
sert a distance function u.sed in the fuzziness method into a 
region growing algorithm. With this method we can get the 
connected region of the pi.xels within distance k from the 
starting pixel color, see Figure Ü.

The condition of connectedness can he satisfied by using 
arbitrary neighborhoods.

Clustering. We recall an algorithm for indexing images 
ba.sed on cluster analysis In this method the elements of 
the RGB cube are classified into clusters using a suitable 
metric. In our investigations we used digital distance func
tions generated by neighborhood sequences, see Figure 9.

151



.\ndms Hajdú, l.ajo.'i Hajdú and Tanuls Tóth /  Properties and .\pplicaiions o f  Heifihhorhtutd Sei^ueiiees

Figure 8: Region growing of a medical picture; (a) Original 
image, lb I region growing with B { i }, ict B =  {3},' the 
bound k for the color distance was 70 in both cases.

Figure 9: Clustering into 6 colors: la) Original, lb) B — 
(12}. (C0 7Í - {23}. ■

In this e.xample we used a so called /i'-means clustering 
method. Of course, several other algorithms are known to 
solve this problem.

We illustrate the importance of choosing the suitable 
neighborhood scL|uence b> the following e.xample. Let C| ^ 
(0.0.0), c'2 - (1.7.1.3.25.3). o  .. (240.240.0) and C4 .= 
1255.255. 255) be four colors. We want to merge the two 
pair of nearest colors in one step, using different distance 
measurements. During this step we reduce the number of 
colors to two.

Using the constant neighborhood sequence .4 =■- {!}. the 
two pairs are (r.'i .cs) and (03. C4), both with distance 285. If 
we use the neighborhood sequence B {3}, the nearest col
ors and distances are r/fc’i ,03) - i/lcv-ca) = 240, We present 
Figure 10 to illustrate this problem.

Figure 10: Effect of different distance measurement: ta) 
Original, ihi using .3 {I }, 10 using Ő {3},

Fuzziness histogram. We present a tool that is to give a 
guideline to help with finding the optimal neighborhood se
quences and threshold values for the above methods. This 
tool is based on the distance-histogram of the image. The xth 
column of the histogram illustrates the amount of the pixels 
inside distance k from the one or more seed colons). The

shape of the histogram highly depends on the chosen dis
tance function; a "faster" distance function results a shorter 
histogram, but reasonable differences may occur with re
spect to the modality, as well, see Figure 11.

Figure 11: Fuzziness histograms for the marked initial seed 
color, using different neighborhood sequences as distant 
functions: la) Original image, lb) B — [\}. Ic) B - {3}.

The difference between two such histograms can be mea
sured by suitable histogram measures \  The Hr.st mode of the 
histogram may play a very important role in region growing, 
as we do not care about colors far from the seed(s).

Global histogram. In another type of histogram was 
proposed, which depends on only the chosen distance func
tion and the image. The kth column of the histogram shows 
the number of chosen pixel pairs whose colors have distance 
k. see Figure 12. (In case of c) in the figure we used the
periodic neighborhood sequence B ; {^(1)...... 1>(50)} -
f^lüj40j ___ 4 1 < ( < 10 and h[i) -- 1 for
I 1 < / < 50.) Fu/.ziness and global histograms are produced 
similarly, but in ihe latter case the lirst node has no particular 
importance.

Figure 12: Global histograms for using different neighbor
hood sequences as distant functions la) Original, lb) B - 
{123}. if.7 0 -{ 3 '" l- '° } .

5.2. Image retrieval by neighborhood sequences

We can consider neighborhood .sequences based on very
aeneral neighborhoods. In ui we introduced some
restricted families having natural background for mov mg in 
the space. The first family contains the following neighbor
hoods:
.V, (0 .i0 .0 .: r l) . i0 .- l .0 ) . in : l .0 .0 )} ,
Vs ' - .V| s, {(0. I . c: I ). i ai I , 0. ~  1 ). ( re 1, z: 1.0)} and 
.V3 “ .Vs -  {(X 1. — 1..— 1)}.
.Note that these neighborhoods are based on the well known 
6-. 18- and 26 neighborhood, respectively. We denote this 
classic subset of neighborhood sequences by C.N.Sr. sec Fig
ure 13.



\njrás Hajílii. Lajiis Hajdú and Tamás Tóth /  Prapenies and AppUcarions <if ,\eif;hhorhoad Sei/iuau es

Figure 13: Sei)>hhorhoüds used for CNSy; (a) .V|, (d) .VS. 
(c) .V’,.

The next family of neighborhood sequences consist the 
followings:
.Vv {O.(±1.0.0)}. .V, -- {O .i0 .± l,0 )} , ,V, -
{O.iO.O.zil)},
,Vn --A;,L/Vv u |(± I .± 1 .0 )} .
.V,- : ;V, ._,;V,U{(±1.0.±r)}.
,.Vv,, -- ,v,. U /V, U {(0. ±  1. ±  1 )} and 
.Vvv,: -- .V.u L ;V,, cJ l\\, Ü { ( ±  1 . ±  I . ±  1 ) } .
Each of these neighborhoods spans a ID. 2D or .2D sub
space of Z '. respectively, thus the set of the sequences 
generated by them is denoted by SN.S;,. see Figure 14. With 
the sequences of these neighborhoods we can explicitly 
prescribe which coordinate(s) are allowed to change at a 
step, while CNSr sequences let as prescribe the number of 
the changeable coordinates only. Note that CN.Sr C.SN.S;i. 
nor .SN'SrCCNSr and P_m = Px.

ta) tb) tc)

(d) (e)

Figure 14: Neighborhood used for SNSj: la) iV,. lb) (c) 
,V-, Id) ;V,̂ , le) /Vi;, If) N\y ifor N\yi see Figure lJUj.

The third family of neighborhood sequences is the mix
ture of the CNSr and SNSr so the capable neighborhoods 
are the followings: P\ .Px-P^.Px- Py. P-. P_u . Pxz - P\z - P.wi- The 
set of the mixed sequences is denoted by .VlNSr, .Note that 
the definition of the three sets is extendable in arbitrary finite 
dimensions.

in image database retrieval we usually have three features: 
color, shape and texture, denoted by c. s and t to extract fea
ture vectors U'. 1. /). The neighborhood notation .V, . V,. .V,

will be used instead of .V,. .VV, .V; and similarly to other SN.S 
neighborhoods. With (c. _v. i) feature vectors we can hnd im
ages similar to the query image in databases.

E.g. we want to select such images that are quite close 
in color and texture to the input image. The most important 
features should be achieved within the least steps, while non- 
imporiant features should need more steps. .Applying these 
considerations, a possible neighborhood sequence answer is 
iV In this case we allow ,2 steps in the c and
i directions first, then s can be changed for 40 steps. The 
periodicity of N guarantees that we do not exclude vectors 
having larger values than 2 in either their c or t coordinates, 
though, they will be reached only after applying more peri
ods. See Figure 1.2 for the matches ranked by their distance 
from O.

(d) 44 te) 44

Figure 15: Quer\ result for N — ' Nz!\\Ny^\: !a) quer\ image 
ih-ej retrieved images and their norm.

6. Conclusion

In this paper we summarized some results about neighbor
hood sequences. We introduced the basic concepts and pre
sented some geometric properties of the polyhedra occupied 
by neighborhood sequences in Z" and Zf: The question 
of approximating the Euclidean distance by digital metrics 
was also considered; '-. We illustrated the use of neighbor
hood sequences in some digital image processing methods;

W'e also indicated that such sequences can he useful in 
applications based on feature vectors;

References

1. .Adobe Photoshop Users Guide.

2. G. Borgefors: Distance transformations in arbitrary di
mensions. Comput. Vision Graphics image Process. 27 
11984). 221-.'4.2.

2. .S.H. Cha and ,S..V Srihari, On measuring the distance
between histograms. Pattern Recognition 2.2 (2(X)2). 
12.2.2-1270.

4. PE. Danielsson: 2D octagonal metrics. Eighth Scandi
navian Conf. Image Process.. 1992. pp. 727-726.

I3i



5. P.P. Das, P.P. Chakrabarti and B.N. Chatterji; Distance 
functions in digital geometry. Inform. Sci. 42 (1987),
113-136.

6. P.P. Das, P.P. Chakrabarti and B.N. Chatterji: Gener
alised distances in digital geometry. Inform. Sci. 42 
(1987), 51-67.

7. P.P. Das and B.N. Chatterji: Octagonal distances for 
digital pictures. Inform. Sci. 50 (1990), 123-150.

8. A. Fazekas: Lattice of distances based on 3D- 
neighbourhood sequences, Acta Math. Acad. Paedagog.
Nyházi. 15 (1999), 55-60.

9. A. Fazekas, A. Hajdú and L. Hajdú: Lattice of gener
alized neighbourhood sequences in nD and ooD, Publ.
Math. Debrecen 60 (2002), 405-427.

10. R. C. Gonzalez and R. E. Woods, Digital image pro
cessing, Addison-Wesley, Reading, MA, 1992.

11. A. Hajdú: Geometry of neighbourhood sequences. Pat
tern Recognition Lett. 24/15 (2003), 2597-2606.

12. A. Hajdú and L. Hajdú: Approximating the Euclidean 
distance using non-periodic neighbourhood sequences.
Discrete Math. 283/1-3 (2004), 101-111.

13. A. Hajdú, J. Kormos, B. Nagy and Z. Zörgő: Choosing 
appropriate distance measurement in digital image seg
mentation, Annales Univ. Sci. Budapest. Sect Comp. 24 
(2004), 193-208.

14. A. Hajdú, B. Nagy and Z. Zörgő: Indexing and 
segmenting colour images using neighbourhood se
quences, IEEE International Conference o f Image Pro
cessing (2003), Barcelona, Spain, 1/957-960.

15. A. Hajdú, T. Tóth, K. Veréb: Novai approach for com
paring similarity vectors in image retrieval, OAGM- 
HACIPPR 2005, Veszprém.

16. A. Hajdú. T. Tóth, K. Veréb: Hexible image retrieval 
using neighborhood sequences. Pattern Recognition 
Lett. (2005), submitted.

17. B. Nagy: Characterization of digital circles in triangular 
grid. Pattern Recognition Letters 25/11 (2004), 1231- 
1242.

18. A. Rosenfeld and J.L. Pfaltz: Distance functions on dig
ital pictures. Pattern Recognition 1 (1968), 33-61.

19. M. Yamashita and T. Ibaraki: Distances defined by 
neighbourhood sequences, Pattern Recognition 19 
(1986), 237-246.

András Hajdú, Lajos Hajdú and Tamás Tóth /  Properties and Applications o f Neighborhood Sequences

154



!

Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Transform ations o f the triangular grid

Benedek Nagy

Faculty of Informatics, University of Debrecen, Hungary 
Research Group on MathematictJ Linguistics, Rovira i Virgili University, Tarragona, Spain

A b stra c t
This paper is about transformations o f the triangular grid. These linear transformations are widely 
used in  square and cubic grids, where the space is described by independent coordinate values. The 
hexagonal and the triangular grids both belong to the basic (regular) grids, and they have more and 
more applications in  Image Processing, Computer Graphics and in other fields o f Computer Sciences. 
In our description -  preserving the symm etry o f the grid -  we use 3 dependent coordinate values to 
refer the points of the triangular grid whose sum  can be 0 and 1. Several applications are based on the 
transformations o f the grid. In this paper basic transformations o f the grid are provided and described 
in mathematical way. Isometric transformations, such as translations, rotations and mirror images 
are detailed by using the symmetric coordinate frame. A n image-storing method fo r  images on this 
grid is also presented.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: E .l [Data 
Structures]: Arrays 1.4.10 [Image Processing and Com puter Vision]: Image Representation

K ey w o rd s: Digital geometry, Geometric transform ation, Triangular Grid

1. In trod u ction

The digital geometry is an im portant part of Com
puter Graphics and Digital Image Processing. The 
classical digital geometry started by a paper of Rosen- 
feld and Pfaltz®, where the two possible neighborhood 
relations on the square grid are defined. The theory 
is well developed for Z™, one of the basic books is 
written by Voss'®. Nowadays, in many applications'’ 
it is worth to  consider other grids than the square 
one. W ith processing power of computers and ca
pabilities of graphics devices increasing rapidly, the 
time is ripe to  consider using non-square sampling for 
Image Processing, Computer Vision and Computer 
Graphics in earnest. The hexagonal and triangular 
based models have some advantages comparing them 
to the square based models'^. The triangular grid 
is used for instance in surface construction, in Com
puter Graphics''*. Some classical drawing algorithms 
for these grids are already known: algorithm gener
ating digital straight lines by Freeman® and drawing 
digital circles on a triangular grid by Shim izu". The 
theoretical study of non-square based structures is of

interest as well, because it provides unified treatm ents 
of large classes of models for computer images'®. The 
hexagonal grid and its dual grid have some nice prop
erties -  for instance, they have more symmetries (6 
possible direction of axes) than the square grid (only 4 
possible symmetry axes) -  and they are regular grids, 
therefore it is not too hard to handle them. Moreover 
there are three types of neighbors in the triangular 
grid, which give more flexibility in applications. Before 
applying these grids a good m athem atical description 
is required.

The Cartesian coordinate system fits very well to 
the square (cubic) lattice, the description is well- 
known, widely used and it is symmetric on the roles 
of the coordinates. The hexagonal lattice is described, 
for instance by Snyder et al'^. In several papers, both 
in theoretical ones’’ and in applications^ as well, there 
are two independent coordinate values tha t are used 
to  refer to  the points of the hexagonal lattice. Some
times it is worth to use more values, even if they are 
dependent, to have a system which is more simple to 
use. Her-® described the hexagonal grid by three co-

155



Benedek Nagy /  Transformations of the triangular grid

ordinate values in a symmetric way. Each hexagon is 
addressed by a zero-sura coordinate triplet. The trans
formations of the grid are analyzed using the sym
metric coordinate frame by Her®. For the rectangular 
case the dual of the grid is identical with the original, 
therefore the Cartesian system can be used for both of 
them. It is not the case of the hexagonal grid; its dual 
is not identical with the original one, it is the trian
gular grid. This grid is also used in some applications 
(see Deutsch^), usually described by two coordinate 
values in a complex way. We want to  describe this 
grid in a simple elegant way. This grid is not identical 
with the original hexagonal lattice, therefore the coor
dinate system given by Her® does not fit to  the trian
gular grid. A symmetric coordinate frame describing 
the triangular grid will be used here based on Nagy®. 
Three coordinate values with sum 0 or 1 are used to 
refer to  a point. There are three kinds of neighbor
hood relations in this grid which allow more flexibility 
in applications as well. *

In this paper we are describing several linear trans
formations of the grid using the symmetric coordinate 
system for the triangular grid. In applications usu
ally the isometric transformations play basic roles. For 
this reason we describe them. We would like to  show 
th a t using the symmetric coordinate frame it is easy 
to  handle the grid, and the way is open for the ap
plications not only on the square and the hexagonal 
lattices, but on this grid as well. This paper presents 
a framework for drawing pictures, processing images 
on the triangular grid. It concentrates on storage and 
transformation of images.

After the introduction the structure of this paper is 
as follows.

In the second section we give notation and prelim
inaries, such as the coordinate system. In the third 
section of this paper we show some properties of the 
triangular grid using the symmetric coordinate frame 
with the help of lanes and half-planes. After this, we 
will consider different types of linear transformations 
of the grid and we will analyze what coordinate val
ues the image-points of the original ones have. Then 
we present a practical method for storing images on 
the analyzed grid. In the last section we summarize 
our results.

2. B asic  n o ta t io n  a n d  co n c ep ts

In this section we recall some definitions and nota
tion from the literature mentioned earlier concerning 
neighborhood relations and the coordinate system.

As Fig. 1 shows, there are three types of neighbors^ 
among the triangles of the grid (we will call the tri
angles points). The figure displays a triangle with its

F ig u re  1: Types o f neighbors o f triangles

12 neighbors. Only the 1-neighbors have a common 
side, the 2- and 3-neighbors are corner-neighbors hav
ing only a common vertex. These relations are sym
metric: if a point P  is an m-neighbor (m =  1,2,3) of 
a point Q, then Q is an m-neighbor of P .

Now, for the mathematical description coordinate 
values are introduced® by the following method.

Let us fix a triangle as the Origin putting the triplet 
(0 ,0 ,0) to it. This triangle has three symmetry axes. 
Let them be the (lines and directions of the) coordi
nate axes; x, y and z  (in angle f jr  by clockwise direc
tion), respectively. Now let the coordinate triplets of 
the neighbors be (1,0,0) (at the direction x), (0,1,0) 
(at y) and (0,0,1) (at direction z). When a step is 
taken through on a side of a triangle of the grid (i.e. 
to  a 1-neighbor) parallel to an axis then the respective 
value of the triplet changes. Going to  the direction of 
the axis it is increasing by 1, while going in the oppo
site direction it is decreasing by 1. Using the iterative 
steps all points get their respective triplets from their 
neighbors.

Fig. 2 shows a part of the grid with coordinate axes 
and the associated coordinate triplets.

156



Benedek Nagy /  Transformations of the triangular grid

W ith the assigned coordinate values we will handle 
the grid in a simple mathematical way. In this way 
every triangle has a unique triplet which exactly shows 
its place.

Using the coordinate values one can write the neigh
borhood relations in the following formal form. The 
points P{Px,Py, Pz) and Q (Qx,Qy,Qz)  of the trian
gular grid are m-neighbors (m =  1,2,3), if the follow
ing two conditions hold:

1. |Pi -  <5tl <  1, for j e
2. \Px -  Qx\ + \Py -  Qv\ + \Pz -  Qz\ =  m.

We note th a t the triangular grid contains exactly 
those points which have sum of coordinate value 0 or 
1. We call them even (shape A  in Fig. 2, as the Origin) 
and odd points (opposite shape V), respectively. So 
the two possible shapes of the triangles represent the 
two possible parities of the points.

We will use the following definition of lanes, which 
is very helpful for our purpose. The sequence of points, 
for which a coordinate value remains constant, forms a 
lane. For instance, the lane containing the points hav
ing the third coordinate exactly 1 (i.e. P {P x ,P y ,l))  
will be referred as lane 2 =  1. Two lanes are parallel if 
their fixed values correspond to  the same coordinate 
axis.

3. P ro p e r t ie s  o f  th e  g rid

In this section we describe some properties of the grid 
with the assigned coordinate-values. We will use some 
of them later.

Observe, th a t an axis goes through on a triangle, if 
and only if two of the coordinates of the triangle have 
the same value.

Now, we are going to  detail some properties of the 
lanes.

3.1 . A b o u t th e  lanes

R e m a rk  1 Every lane is orthogonal to one of the co
ordinate axes, th a t is the axis for which the coordinate 
value is fixed.

A lane has exactly one triangle meeting the coordi
nate axis, which is orthogonal to  it, and two triangles 
(points) meeting each non-orthogonal axis. The lane 
2 = 1  contains the point (0 ,0,1) meeting the axis 2, 
and two-two 1-neighbor points meeting the other two 
axes, namely (—2,1,1) and (—1,1,1) with x  and the 
points (1, —1,1), (1, —2,1) with the axis y.

Two non-parallel lanes must intersect each other. If 
two lanes are not parallel then they have exactly two

common points at their intersection (those triangles 
are 1-neighbors).

As we stated before, if a point meets an axis, then 
its two coordinate-values regarding the another two 
axes are the same. For instance every point on the axis 
X  has the same second and third coordinate value. It 
means th a t the point is on the lanes for which the same 
value is fixed on axes y and z  respectively. For exam
ple, the lanes 2 =  1 and y — 1 intersect each-other. 
They are orthogonal to  the axes z  and y, respectively. 
The two points where they meet are on the axis x: 
( -2 ,1 ,1 )  and ( -1 ,1 ,1 ) .

The next subsection is about some connected infi
nite parts of the grid.

3 .2 . O n  h a lf-p lan es in  th e  g r id

W ith the coordinate axes and values we have half
planes where a  coordinate is (non-)pasitive/negative. 
(We use the term half-plane as a set of points which 
belong to  a Euclidean half-plane.) One can check on 
Fig. 2 th a t, for instance the points for which the value 
of the first coordinate is non-negative form a half
plane containing all the points P{Px,Py ,Pz)  having 
Px >  0. The intersection of two half-plane regions can 
be a third or a sixth of the plane. One can obtain a 
third of the grid, where a coordinate value (let it be, 
for instance, Px) is positive and another one (let us say, 
for instance, Py) is negative. The intersection of two 
half-planes where the coordinate values (let them be 
Px and Py) have the same sign (they are both positive 
or negative) determines a sixth of the grid. Since we 
have only points with two kinds of coordinate sum, 
in these cases the third coordinate must have oppo
site sign than these two ones. Therefore, the points 
for which a value (let us say at coordinate x) is posi
tive and the two others are negative, are occupying a 
connected sixth of the plane, starting  from the Origin 
and covering the axis for which the value is positive. 
Similar statem ent holds for a negative and two posi
tive values.

The points between the positive part of an axis a 
and the negative part of another axis b (where a and h 
are any two of the axis x, y, z) have coordinate triplets 
w ith greatest value at the place according to the axis 
a and lowest value at the place according to b. As an 
example, one can check th a t the points P(Px, Py, Pz) 
with Px > Py > Pz form a connected sixth of the 
plane.

In the following sections we describe in a detailed 
way the transformations of the grid, such as, for ex
ample, translations, mirroring and rotations.

1



Benedek Nagy /  Transformations of the triangular grid

4. T ra n s la tio n s

A translation which maps a point to  a point with the 
same parity is an isometric transformation. If a  trans
lation maps a point to  a point w ith the opposite parity, 
then the map-grid differs from the original one. This 
happens because the triangular grid is not a  lattice. 
So, there is a grid-vector v{Vx,Vy,Vz) connecting two 
points of the grid such th a t the grid translated by v 
does not cover the original grid.

We are detailing only the first type of translations. 
Remember, th a t we are using only integer coordinates.

P ro p o s i t io n  1 A translation with vector v{vx,Vy,Vz) 
maps the grid to itself if and only if Vx + Vy + Vz = 0.

W atching the neighbors which have the same par
ity, one can see th a t there are 3 basic translations 
(orthogonal directions of coordinate axes), they are; 
x (0 ,1, —1) to orthogonal direction of axis x, y{—l, 0,1) 
to  direction according to  y  and z ( l ,  —1,0) orthogonal 
to  direction z. One can check th a t the translation with 
vector z — y  transforms the grid to  direction x  by the 
translation unit of the grid in this direction (it is \/3  
times the length of a side of a grid-triangle). All trans
lations can be given by using the basic vectors finitely 
many times. Moreover, our space is two dimensional, 
therefore we have the following statement.

P ro p o s i t io n  2 Hence any two of the basic vectors 
are independent, but altogether they form a linear de
pendent set, two basic vectors are enough to  describe 
all translations. We will use vectors t (0, 1 ,—1) and 
y ( - l ,  0 ,1). Each translation (given by a vector y) has 
a  unique linear decomposition to  translations by x  and
y-
T h e o re m  1 Let y{vx, Vy,Vz) be a vector of a transla
tion which maps the grid to itself. Then the image of 
every point can be calculated in the following way. Let 
P(Px, Py, Pz) be a point of the grid, then its image is

5. M ir ro r  im ages

In this section we are describing isometric transforma
tions such as axial and central mirroring.

5.1. A x ia l m ir ro rin g

First we are analyzing the special cases, when the sym
metry axis is the same as a coordinate axis.

T h e o re m  2 Using axis a (a can be any of the three 
coordinate axes x, y ,z )  as a. symmetry axis a point P  
has mirroi' image Pá such th a t the coordinate value 
according to  the axis a is the same for the points P  
and Pá; and the other two coordinate-values are inter
changed.

For instance the point P ( l ,2 ,  —3) has image 
P i (1, —3,2) mirroring it to the axis x.

The lanes orthogonal to the symmetry axis are 
transformed to themselves. A lane which is not or
thogonal to  the symmetry axis has image exactly tha t 
lane which has the same common points with the sym
metry axis, i.e. it has the same value fixed but in other 
coordinate.

P ro p o s i tio n  3 Let P  be a point. The points obtained 
by perm utating the coordinate-values of P  exactly the 
same points as the mirror images of P  obtained by 
mirroring it to  some of the coordinate axes.

As; a  consequence of the previous theorem we claim 
the following fact.

C o ro lla ry  1 A point has the same parity as its sym
metric pairs (using axial mirroring to  the coordinate 
axes).

L em m a 1 Every point has an image in the sixth x  > 
y > z of the grid.

It is a nice property of the assignment of coordinates 
to the grid, th a t a point and any of its symmetric 
pairs (mirroring the point to  an axis) have the same 
coordinate values. So a point and its mirror images 
identical within a perm utation of their coordinates.

Using our previous results from Section 4, we extend 
this result to  the cases in which the symmetry axis is 
parallel to  a coordinate axis.

So, let the symmetry axis be parallel to an axis, let 
us say, to  x. Let n  G Z the param eter of the symmetry 
axis, i.e. the distance of the axes x  and the symmetry 
axis in the following sense. Translating the grid with 
vector n z  the image of the axis x  is exactly the sym
metry axis. (In this way all possible symmetry axes 
can be obtained which contains some of the vertices 
of the grid and it is parallel to  the axis x.) Then the 
mirror image can be obtained by the translation (by 
nz) of the mirror (using x  as symmetry axis) of the 
translated (by —nz)  grid. In this way, we have the 
following proposition.

P ro p o s i tio n  4 Mirroring the grid to  the axis par
allel with X  and param eter n , the image of a point 
P{Px,Py,Pz)  will be

K x (P x ,P z  - n , P y  + n) 

by a simple calculation.

Similar method works for other axes, using vector x  
and y  for the translations when the symmetry axis is 
parallel to the eixis y  or z, respectively. Let the param
eter of the symmetry axis be n. Therefore the images 
of P{Px,Py,Pz)  are

Pny{Pz + n ,Py, Px -  n)

158



Benedek Nagy /  Transformations of triangular grid

and

K z iP y  - n , P x  + n, Pz),

respectively.

Now we are considering the case when the symmetry 
axis is orthogonal to one of the coordinate axes. First 
we are dealing with special cases and after we will 
extend the results.

As a special case, for instance we will use the sym
m etry axis which is orthogonal to  the axis x  contain
ing the side between (0,0,0) and (1 ,0 ,0). This line is 
between the lanes x  = 0 and a; =  1 such th a t these 
two lanes are mirror images of each others. The mirror 
image of the axis x  is the axis x  itself containing the 
points in inverse direction. (There is not any point of 
the grid which is image of itself.) The image of the axis 
2/ is a line parallel to the axis z  in inverse direction, 
going through on the midpoint of the triangle (1,0,0). 
The mirror image of the axis z  can be obtained from 
the axis y  by shifting it by the vector (1 ,0 ,0) and con
sider it in opposite direction. So, we have the following 
formula.

P r o p o s it io n  5 The mirror image of the point 
P (P x,P y,P z)  using the symmetry axis between 
(0 ,0 ,0) and (1 ,0 ,0) is given as

P L i - { P . - - l ) , - P z , - P y ) -

Using another orthogonal symmetry axis to  x  we 
must use translations as well.

T h e o re m  3 Let the symmetry axis be orthogonal to x  
in the midpoint of the edge between — [ f  J  ,  -  [ f  J )  
and ( n d - l , -  [ ^ J )  (we use the integer
part function a t the second and third coordinate val
ues; we call n  the param eter of the symmetry axis). 
Then the mirror image of a point P {P x,P y,P z)  is 
given as

Pnxx(2n +  1 -  Px, - n  -  Pz, - n  -  Py

Similarly, one can check the formulae for the cases 
when the symmetry axis is orthogonal to  another coor
dinate axis. (One can use the vectors x o r y  for trans
lations in case when the symmetry axis is orthogonal 
to  the coordinate axis y  or z, respectively.)

P r o p o s it io n  6 The mirror images of a  point 
P (P x,P y, Pz), mirroring it to  a  symmetry axis orthog
onal to y or z  with param eter n  are given as

1 — Pz, 2n + I — Py, —n  — Px)P ny l i-

and

P n z x i - n  ~  Py, - n  -  P x,2n  + 1 -  Pz).

Not0j th a t these transform ations change the parities 
of poiots.

It is a simple observation th a t a  point can be trans
formed! to  any of its 12 neighbors by an axial mirroring.

Since all triangles have three directions of symme
try  axes and there are three other directions of possi
ble synnmetry axes of the grid (containing sides of the 
triangles), we dealt all the possible symmetry axes of 
the grid. So, we finished with axial mirroring, let us 
see the! central ones.

5 .2 . C e n tra l m irroring

There are two different possibilities for central mirror
ing. T he center can be: a  midpoint of an edge or a 
vertex of the grid (i.e. corner of triangles).

F irst we show the special case, when the center of 
the operation is the midpoint of the edge between 
(0 ,0 ,0) and (1 ,0 ,0). One can check, th a t the formula 
is the following.

P ro p o s i t io n  7 The mirror image of a point 
P{Px,Py, Pz) by central mirroring to  the center which 
is the middle-point of the edge between (0 ,0 ,0) and 
(1 ,0 ,0) is

P c . ( l - P r , - P „ , - P z ) .  ■

For the mirroring with center such tha t the edge 
containing the center of the transform ation is not or
thogonal to the axis x  we use special cases the edges 
between (0 ,0 ,0) and (0 ,1 ,0) or (0 ,0 ,1).

P ro p o s i t io n  8 The mirror image of a  point 
P{Px,Py,Pz)  by central mirroring to  the center in the 
middle between (0 ,0 ,0) and (0 ,1 ,0) is

P'cy{-Px, \ -  Py,-Pz)-,

by central mirroring to  the center in the middle be
tween (0 ,0 ,0) and (0,0 ,1) is

P ' Px, Py, 1 — Pz).

Let Afector y  be the param eter of the center, in the 
sense th a t translating the grid by ~ y  the edge con
taining the center has mirror image between (0,0,0) 
and one of the following three vertices (according to 
the direction of the edge); (1 ,0 ,0 ), (0,1,0), (0,0,1).

T h e o re m  4 A center for mirroring is given. Let 
y{vx,v^,Vz) be its param eter vector. We denote the 
axis by a (it can be x, y  or z) which is orthogonal to 
the side containing the center. The mirror image 
of a  point P{Px, Py, Pz) is given by the following coor
dinate values: the value assigned to  axis a is calculated

1

159



Benedek Nagy /  Transformations of the triangular grid

X ,  therefore P('_2,o,2)c^

as 2va +  1 — Pa, the other two values are 2vb — Pb, for 
each b 6 {x, y. z}  with a ^  b.

Here we present a simple example for better un
derstanding. Let the center of the transformation 
be the middle of the edge between (—2,0,2) and 
(—1,0,2). It is orthogonal to  axis x  and the parameter 
is w(—2,0,2). Let us com pute the mirror of the point 
P ( —2,0,3). In our case a 
has the following coordinate values:
(2 (-2 )  +  1 -  ( -2 ) ,  0 -  0 ,2  • 2 -  3) =  ( -1 ,0 ,1 ) .

Now we are describing the ceise when the center of 
the mirroring is a vertex of the grid. Every vertex of 
the grid is a corner of six triangles, bu t three triangles 
are enough to  have a unique address of the vertex. Let 
us consider, first, the center vertices at the corner of 
(0 ,0 ,0), (1 ,0 ,0), (1 ,0 ,-1 ) ,  (1 ,1 ,-1 ) ,  (0 ,1 ,-1 )  and 
(0 ,1 ,0). One can compute th a t the following sta te
ment is true.

P ro p o s i t io n  9 The mirror image of • a point 
P{Px, Py, Pz) using central mirroring with center in 
a corner of triangle Origin which corresponds to  di
rection —z  has the next coordinate values:

P e ' ( l - P x , l - P v , - 1 - P a ) .

Let us calculate the other cases, using translations. 
Let y{vx,Vy,Vz) be the (parameter) vector which 
sta rts  at the corner previously analyzed and ends at 
the center of the mirroring (another vertex of the 
grid). It is easy to  check th a t y  has integer coordi
nate values with zero sum. Then the transformation 
can be calculated in the following method.

T h e o re m  5 The mirror image of a point 
P{Px,Py ,Pz)  using central mirroring a t a corner with 
param eter v(vx,Vy,Vz)  is

Pvc(2Vx + l - P x , 2 V y  + l -  Py, 2Vz ~  1 ~  Pz) ■

All these central mirroring operations change the 
parities of the points.

Note, th a t each central mirroring can be obtained 
by two axial mirrorings using orthogonal axes which 
are meeting a t the center of the central mirroring. In 
the cases when the center of the transformation is on 
an edge one can use mirroring with parallel axis of 
the edge (exactly th a t one, which line is the extension 
of the edge) and mirroring with an axis orthogonal 
to  the edge. For instance, the mirroring with center 
the midpoint of the edge between (0,0 ,0) and (1,0,0) 
one can use the mirroring to  axes x  and xA. (we used 
these indices for the given transformations). Similarly, 
when the center is a vertex of the grid, for example the 
one which is used in Proposition 9 we have: the axial 
mirroring with axes indexed by xT  and —lx.

Since the central mirroring changes the parity of the 
points, there is no this kind of mirroring to  transform 
two points with the same parity to  each other.

6. R o ta tio n s

In this paper we are using only rotations which map 
to  the grid itself. Therefore the center of the rotation 
must be a kind of symmetry center of the grid. There 
are three possibilities:

•  the center is a vertex of the grid,
•  the center is a midpoint of an edge of the grid or
•  the center is in the middle of one of the triangles.

In the latter case the rotation can be 2knf3  with k e  
Z. First, we will detail the special case when the center 
is in the Origin (0,0,0). W ith simple computation we 
have:

P ro p o s i t io n  10 Rotating clock-wise direction the 
grid around the midpoint of the Origin with angle 
2fc7r/3, where k = 3n 1 (for some n  € Z) then the 
image of the point P{Px, Py,Pz)  is

P^{Px,Px,Py).

W ith k = 3n f- 2 (for some n  e  Z) the image of the 
point P  is

P U P y ,P z ,P x ) .

(In the case of A: =  3n the rotation does not change 
anything.)

Using center in another even point as the center 
of rotation, one can translate the grid, such th a t the 
center’s image is the midpoint of (0 ,0 ,0). The rotation 
can be made and after this the translation in backward 
direction. If a center is in an odd triangle then a mir
roring is needed to  have a transform ation which maps 
the center into (0,0,0). We showed how it is going in 
the previous section. So, we have:

T h e o re m  6 Let our transform ation be a rotation 
around a center of the triangle iV{vx,Vy,Vx)). (Let 
us say the vector v{vx,Vy,Vz) is the param eter of the 
rotation.) Then the images of a  point P{Px,Py,Pz)  
are

P'vr{Pz -  Vz  -1- V x , P x  - V x  + V y , P y  -  V y  +  V z )

(by 27t/ 3 clock-wise direction) and

Pyrr(.Py '^y T  '^x, Pz d" Uy, Px Vx Vz')

(by 27t/ 3 anti-clock-wise direction or by 47t/3  clock
wise direction).

When the center is a midpoint of an edge of the 
grid, only the rotations with kn {k 6  Z) transform the 
grid to itself, but these cases (for odd value of k) are

160



Benedek Nagy /  Transformations of the triangular grid

exactly the central mirroring case, therefore we skip it 
(they were detailed in the previous section). For even 
values of k the image of a point is exactly the same as 
the original one.

When the center of the rotation is a vertex of 
the grid, the rotation can be with angle fcx/S with 
k e  Z. Here we are detailing the special case, 
when the the rotation center is a corner of tri
angles (0 ,0 ,0), (1 ,0 ,0) and (0 ,1 ,0) (and, of course, 
(1 ,0 ,-1 ) ,  (1 ,1 ,-1 ) ,  (0 ,1 ,-1 ) ) .  Let us analyze what 
are the images of the different lanes.

P rop osition  11 Rotate around the common corner 
of triangles (0 ,0 ,0), (1 ,0 ,0) and (0,1,0) clockwise di
rection by the angle 7t/ 3. Let c £ Z be a constant. 
The lane x =  c has image lane z =  —c.
The lane j/ =  c is mapped to the lane x =  1 — c. 
Finally, a lane with z =  c has image y  =  —c.

Using the facts given above, one can compute the 
image of a point.
P rop osition  12 The image of a point P{Px,Py,Pz)  
rotating it by tt/ 3 (clockwise) using the center at the 
corner of (0 ,0 ,0) in the opposite direction of axis z  eis 
center:

P U i - P y , - P z , ~ P r ) .

Note, that this rotation changes the parity of the 
points.

Using another angle (k ^  1) one can repeat the 
above rotation. Note, that rotating by angle {2k f  
1)7T, (fc € Z) (i.e. three times the rotation by angle 
7t/ 3) the image is the same as it was with central mir
roring with the same center; rotation by angle 2kn (i.e. 
rotation with six times by angle 7t/ 3) does not change 
anything.

When the center is in another hexagon, then first a 
translation must be used, as we used in the previous 
sections. After this the rotation can go and the tran
sition which is the inverse of the original one. We can 
formulate it in the following way:

T h eorem  7 Let us use the transformation, which ro
tates the grid by kn/S {k =  1,2) clock-wise direc
tion around the center with parameter y{vx,Vy,Vz). 
Let P{Px,Py,Pz)  be a point. The images of P  are

PÍr {Vx + V y P \ -  Py,Vy + V z  -  Pz,Vz + V x  -  Px)

and

P v R r { ‘̂ x -Vz +  I  +  P z , V y  -  V x  +  P x , V z  -  V y  -  1 -  P y ) .

The rotations by larger angles can be obtained as 
the mirror images of the points P, Py^ and PyRR, by 
the same center.

7. M ixed  transform ations

In this section we are describing, which basic trans
formations are needed to have all detailed isometric 
transformations. As we showed in Section 4 two basic 
translations are enough to describe all translations. 
Allowing repetitions the translations by basic vectors 
X and y  are enough. We need basic mirror operations, 
one can use them with indices x, X -L and —lx. We 
need rotations with indices r and R.  Using the rota
tions more times one can obtain rotations with larger 
angles. The rotation with r interchange the coordinate 
axes, therefore one can do the mirroring to other axes 
as well. Finally, one can obtain the central mirroring 
by using two axial ones.

So, we can state, that all isometric transformations 
of the grid were computed.

8. S tor in g  im ages o f  th e  trian gular grid

In the previous sections of the paper some processing 
methods, namely the isometric transformations were 
described; now we give another practical aspect to 
Computer Graphic on the triangular grid.

In this section we show a method to store images 
of the used grid. The grid is described by coordinate 
triplets, but to use a real three dimensional storage- 
array is highly ineffective.

The number of data would be stored is the num
ber of the elements of two two-dimensional arrays. So, 
there is a more rational way to store the data on the 
grid by using a three dimensional matrix, with two 
real dimensions (x and y) and only two possible val
ues in the third dimension (denoted by z). The points 
of the grid have triplets with sum 0 and 1. Therefore 
two given coordinate values (x, y) address exactly two 
points, an even (0-sum) and an odd (1-sum) point. 
The third ’dimension’ of the array is refer to the par
ity of the addressed point. The actual third value of a 
stored point (x ,y , z )  can be calculated in any time by 
the expression z =  z — x — y.

Using the storage system described above one can 
ecisily can write a program which transforms an image 
by any of the detailed transformations in an efficient 
way (all the transformations are in linear time com
putable).

Several well-known compression methods of images 
can also be used in a highly similar way than in the 
square case.

9. C onclusion

In this paper the mathematical background is pre
sented to apply the triangular grid in Image Process-

1

1

161



Benedek Nagy /  Transformations of the triangular grid

ing and Computer Graphics. Tiiis grid has more sym
metry than  the square grid therefore one can get nicer 
results. The three types of neighbors give more flexi
bility in applications than the hexagonal or the square 
grids have. The triangular grid is described in a sym
metric coordinate-frame.

The square grid can be stored as a m atrix in the 
computer, using the coordinate system (that we used 
in this paper) the triangular gri/1 can be stored as a 
three dimensional array (as a part of the cubic grid) 
or using much less space as two two-dimensional ma
trices (containing the odd and the even points, re
spectively). We recommend to use this grid in appli
cations as well. To help to  develop real applications 
the central transformations (rotation, mirroring, etc.) 
are provided for the Community. Similarly several ax
ial coordinate-transformations are described. We pre
sented formulae for any isometric transformations of 
the grid. These equations are the basic tools in many 
possible applications of this grid, such as Image Pro
cessing, Computer Graphics, etc. In some applications 
this grid may have nicer and better properties than the 
square-grid, it is a further research to  discover and de
scribe many of them (for instance the approximation 
of the Euclidean circles looks one of the candidates by 
symmetric reasons).

A cknow ledgm ents

This research was supported by a grant from the Hun
garian National Foundation for Scientific Research 
(OTKA F043090).

R eferences

C.H. Chen, L.F. Pau and P.S.P. Wang (eds.). 
Handbook of pattern recognition & computer vi
sion, (Handbooks in Science and Technology), Or
lando, FL: Academic Press, 1986. 1

E.S. Deutsch, “Thinning algorithms on rectangu
lar, hexagonal and triangular arrays,” Communi
cations of the. ACM  vol. 15, pp. 827-837, 1972. 1, 
2

3. H. Freeman, “Algorithm for Generating a Digital 
Straight Line on a 'I'riangular Grid,” IEE E  Trans. 
Computers vol. 28 pp. 150-152, 1979. 1

4. R.C. Gonzalez and R.E. Woods, Digital image 
processing, Reading, MA: Addison-Wesley, 1992. 
1

5. I. Her, “A symmetrical coordinate frame on the 
hexagonal grid for computer graphics and vision” , 
A SM E J. Mech. Design, vol. 115, no. 3, pp. 447- 
449, Sept. 1993. 1, 2

162

6.

7.

9.

12.

I. Her, “Geometric transformations on the hexag
onal grid” , IEEE TYansaction on Image Process
ing, vol. 4, no. 9, pp. 1213-1221, Sept. 1995. 2

E. Luczak and A. Rosenfeld, “Distance on a 
hexagonal grid,” IEEE Transactions on. Comput
ers, vol. C-25(5) pp. 532-533, 1976. 1

B. Nagy, “A symmetric coordinate system for the 
hexagonal networks”, Information Society 2004 -  
Theoretical Computer Science (ISO4-TC S), AC M  
Slovenija conference, Ljubljana, Slovenia, pp. 193- 
196, 2004. 2

A. Rosenfeld and J.L. Pfaltz, “Distance functions 
on digital pictures,” Pattern Recognition vol. 1, 
pp. 33-61, 1968. 1

10. A. Rosenfeld, “Digital Geometry: Introduction 
and Bibliography” , Technical Report CS-TR- 
140 /  CITR-TR-1 (Digital Geometry Day 1997), 
Com puter Science Department of The University 
of Auckland, CITR at Tamaki Campus, 1997. 1

11. K. Shimizu, “Algorithm for generating a digital 
circle on a triangular grid” , CGIP  vol. 15, pp. 
401-402, 1981. 1

W .E. Snyder, H. Qi, and W.A. Sander, “A coor
dinate system for hexagonal pixels,” Prceedings o f 
SPIE, Medical Imaging, pp. 716-727, 1999. 1

13. K. Voss, Discrete Images, Objects, and Functions 
in  Z", Algorithms and Combinatorics; 11, Berlin, 
Heidelberg, New York: Springer-Verlag, 1993. 1

14. D. Zorin, “Smoothness of stationary subdivision 
on irregular meshes,” Constr. Approx, vol. 16 no. 
3, 359-397, 2000. 1



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Interpolation by low degree Bézier-curves with different
parameter sets

I. J u h á s z ,M. Hoffmann^

’ Department of Descriptive Geometry, University of Miskolc, Miskolc, Hungary 
 ̂Institute of Mathematics and Computer Science, Károly Eszterházy College, Eger, Hungary

Abstract
Given a sequence o f points computation o f the interpolating Bézier-curve is a standard method in CAGD. In 
this algorithm, however, the parameter values o f the given points have to be defined in advance. Apart from 
the endpoints this parameterization heavily affects the shape o f the Bézier-curve. The geometric influence o f the 
changing parameter set is presented here for quadratic and cubic Bézier-curves. Choosing "best" parameterization 
from a geometric point o f view is also discussed in this paper.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve, surface, solid and 
object representations

t This research is supported by the Hungarian National Research 
Fund research grant No.T 048523

163



Third Hungarian Conference on Computer Graphics and Geometry, Budapest, 2005

Real-time Ray tracing with Image Coherence

Balázs Tóth^

Department of Control Engineering and Information Technology 
Budapest University of Technology and Economics 

Budapes/Hungary

Abstract
This paper presents a combination o f ray-tracing acceleration techniques. This acceleration methods allow us to 
achieve interactive frame rates with the classic ray-tracing image synthesis method used originally for high-quality 
offline rendering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Ray-tracing

1. Introduction

Interactive rendering systems provide a powerful way to ex
plore complex environments. Until recently the processing 
power of computers did not allow us to achieve high frame 
rates with ray-tracing based algorithms. The only interactive 
rendering methods were hardware accelerated polygonal 
rendering systems, which are less flexible and are poorer in 
providing sophisticated lighting effects.

Software-only methods are easy to modify and extend, 
which makes them a good candidate to experiment with 
various interaction and rendering methods. Nowadays an 
optimized ray tracer-based software rendering system can 
reach the performance of a polygonal algorithm.

object the ray hits first. In the next step we calculate the 
direct contributions of the light sources with the diffuse and 
specular components of the hit object’s material. In order 
to handle the reflective and translucent materials, we must 
determine the next object through the hit point. In this case 
we spawn new rays (the origins are the hit points and the 
directions are calculated using Snell’s law) and trace them 
to determine these components.

The most time consuming part of this algorithm is the hit 
point search. If we want to make a high-resolution image, we 
have to trace million rays through the modell space. A naive 
ray-tracer calculates the intersection point with every object 
to find the closest. With the secondary and shadow rays the 
required computation will be enormous.

The recursive ray-tracing algorithm is fairly easy to un
derstand and implement, but it’s powerful enough to exam
ine the possibilities of the algorithmic and implementational 
optimizations. With the use of spatial subdivision algorithm 
and some optimization we can reach decent frame rates.

1.1. Recursive ray-tracing algorithm

The idea behind this algorithm is to simulate the path of 
light rays The most important part of the algorithm is the 
light-trace function. In this function we must determine the

t  tbalazs@iit.bme.hu

2. Subdivisional Acceleration Structure

To lower tlie number of intersection test we can use some ac
celeration structure. These structures are based on the repet
itive subdivision of the modell space. With the use of these 
structures we can exclude large number of objects from the 
ray-object test, because we can determine group of objects 
which can’t hit by the ray. For example, the objects behind 
the ray origin or out of the viewing frustrum.

2.1. KD-'frce implementation

The best subdivision method is based on a special data 
structure called kd-tree. My research is based on Vlastimil

164

mailto:tbalazs@iit.bme.hu


Balázs Tóth /  RTRT with Image Coherence

Havran’s thesis who did an extensive study of available 
spatial subdivision schemes (regular grids, nested grids, 
octrees and kd-trees). He concluded that kd-trecs beat others 
in most cases. It was also shown that the average number of 
intersection tests to find the closest intersection can be made 
as small as 2-3 independently of the number of objects 5’<’.

The kd-tree is an axis-aligned Binary Space Partitioning 
tree. The space is partitioned by splitting it into two halves. 
The halves are processed recursively until every partition 
contains only one object. The most important difference 
compared to other schemes is that the position of the par
titioning plane is axis aligned but not fixed. The use of the 
axis-aligned splitting planes has several advantages. Most 
importantly, it makes intersection test inexpensive with low 
memory footage of the tree •*.

2.1.1. Building the tree

To build the tree, we must determine the right positions of 
the splitting planes. The simplest method is to choose it in 
a way which ensures that the numbers of objects on both 
sides of the plane are roughly the same. This method is not 
the best because it doesn’t produce empty nodes and the 
ray-tracer must check all objects in each node during the ray 
traversal.

Better trees can be constructed using a heuristic splitting 
rule. A good heuristic tries to isolate the empty spaces. In 
such nodes the traversal algorithm can travel through with
out expensive intersection tests. Such a heuristic is the Sur
face Area Heuristic. The basic idea is that the probability of 
a ray hitting object is related to it’s surface area. The area of 
the node is

2 X width X iengih X height.

The cost of traveling in a node is

Travel +  Area X ObjeefsInTheNode X InterseefionTest,

where Travel is a constant traversing cost in an empty 
node and the Intersection Test is a constant cost of ray-object 
intersection test. The splitting of the node produces two new 
nodes, so the splitting cost is calculated by summing the new 
node’s costs. If we always use the less expensive splitting 
plane, we get a good kd-tree. To find the good splitting plane, 
we must test all the possible planes. There are many planes 
to choose from, but the number of the interesting positions is 
limited. The limitations are that the splitting plane must be 
axis aligned and must touch the border of at least one object.

Even with these constraints there are a large number of 
candidates. So building a kd-tree is a slow process, but with a 
static scene we must build the tree only once. The hit search 
with a good kd-tree is four times faster than the regular grid 
and many times faster than the naive test-with-all-objects 
method.

2.1.2. Storing the tree

The kd-tiree is built up from nodes that store the position of 
the splitting plane, a flag that indicates whether the node is a 
leaf node or not. If the node is not a leaf, then it must contain 
a pointer to its left child node.

If the node is a leaf node it contains a pointer to the list 
of objects in the node. These data members of .the nodes can 
be stored in 8 bytes. We allocate the child nodes in pair at 
a 16 bytes boundary. With this allocation scheme we can 
save a pointer in each node, because the position of the right 
child ncMÍe is right after the left node. The size of the node 
pair is 16 bytes, therefore in a single 64 kbytes cache line we 
can store four node pairs. When the traversal algorithm reads 
the left child node, the right child is loaded into the cache 
because of the behavior of the cache loading process. This 
improves cache performance if the series of the successive 
rays wal k through the same nodes.

2.13. Tkaversing the tree

The ray traversal algorithm is a simple repetitive point- 
location search in the tree along the ray path. First we 
determine the point of the ray origin in the tree. If the node 
is not enopty, we test the intersection of the objects with the 
ray and select the closest intersection point. If the node is 
empty or we didn’t find an intersection, we determine the 
exit point of the node along the ray’s direction. The exit 
point is slightly moved forward along the ray path to ensure 
that the next point-location search is in the next leaf and 
then the ray-traversal algorithm is called recursively. This 
recursion is terminated when a hit point is found or when 
the ray is out of the scene.

If the ray origin is out of the tree, we must determine the 
entry to the tree along with the ray in the first step.

The figure 2 is an example search of the location of ray

165



Balázs Tóth/RTKT with Image Coherence

Figure 2: Traversing the tree

r in figure i . The process starts at the root node of the tree. 
On every level we compare the origin of the ray with the 
position of the splitting plane. We choose the left or right 
child node by the comparison, and we go down the tree until 
we find a leaf node. In this leaf node will be the location of 
the ray. We test all the objects in this node, and if there is 
an intersection point (in the scene in figure 1 file ray r will 
intersect the black sphere) we finish the searching process. 
If there is no intersection we go to the next leaf, which is 
selected by the exit point of the ray from the node.

3. Ray grouping

Nowadays on modem CPUs the mathematical operations 
are faster than memory access. To exploit this computational 
power, we need to use the SIMD* capability of the CPU. 
With the SIMD extension we can handle four rays for the 
cost of one. This only possible if we carefully choose which 
rays to shoot together, as there is large spatial coherence in 
the geometry which can we exploit. This is especially true 
for the primary rays.

The proper selection of the groupped rays ensures to 
utilize the full power of the modern CPUs caching mech
anism, because the performance gain correlates with the 
group size (Current SIMD implementations support only 
four simultaneous operations).

the chance that these rays will diverge in the fiaversal 
process. We can deal with this problem if we use variable 
number rays and regroup them if necessary, or we can mark 
the diverging rays and disable them. All these methods 
has drawbacks, because the administration cost of the 
regrouping or marking the rays can easily amortize the 
performance gain of ray grouping.

3.1. Alternative entry points

To reduce the administration cost of the ray grouping, we 
can use alternative entry points to the acceleration tree as 
Alexander Reshetov et’al.  ̂ proposed. If we use ray group 
of four ray to represent and characterize a beam of rays 
as Assarsson and Möller defined ', we can find alternative 
entry point for each ray beam and don’t need to start at the 
toot node of the tree for every ray. Ideally we might even 
find an optimal entry point, which is right at the leaf node. 
In this case we can find the first hit object in a single step, 
which reduces the traversing steps significantly.

To find an alternative entry point, we trace the comer rays 
as long as they walk through the same way in the tree. If at 
least one of the rays is diverging we can do two things. On 
the one hand, if the actual node is deep enough in the tree 
we can mark this node as the entry point for the rays in the 
beam. On the other hand, we can decompose the beam to 
more beams and search for individual entry points for every 
child beam. In the decomposition process we can split the 
beam to equal parts, or along the cells of the tree. Tire first 
method is faster but the second produces less beams along 
the searching process.

3.2. Tile based rendering

Ray grouping with alternative entry points tries to find a 
better entry point for the rays in the beam. If the beam 
represents a wide range, the common entry point will be in 
the higher region of the tree, so the benefit of this algorithm 
will be not too much unless we use the costly beam splitting. 
For primary rays, it is practical to split the viewing ftaistrum 
to equal sized sub-groups. The easiest way is to .split the 
image plane into equal tiles. This tiles can be rendered 
independently, so they can assigned to a separate processor 
or machine if we use multi-processor or clustered system.

If we want to use ray grouping, we must deal with the 
situation when rays go through different paths in the tree. 
As the number of groupped rays increases, so increases

t  Single Instruction Multiple Data

The tile based rendering is improve the cache perfor
mance too, because the chance of two rays - which are next 
each other - hit the same object is large. In this case the 
needed part of the acceleration tree and the geometrical in
formation will be in the high speed cache memory and don’t 
need to read from the slower main memory of the system.

166



Balázs Tóih /  HÍRT wiih Ima^e Co/ivirnct'

3 J . Importance sampling

A recursive ray-tracer spawns new rays at every intersection 
point to determine the contributions of the light sources 
and other obiects. The amount of the secondary ray's 
contributions is based on the scene setup and the attributes 
of the materials. Diffuse materials need far less secondary 
rays than the shiny, reflective surfaces.

The depth level of a secondary ray can be limited too. 
If the contribution of a secondary ray is negligible we can 
stop the ray spawning process belore the depth reaches the 
ma.ximum.

With these limitations we can reduce the count of the 
traced rays with a small deereu.se of quality.
In figure .1 the rays belong to white pi.xels are terminated 
before they reached the limit of the ray-tracing depth.

more primary rays in that pi.xel to avoid aliasing. The ori
gins of the primary rays are modified with a small random 
number to take advantage of the multiple samples.

Figure 3: bnpononce sampling

3.4. Supersampling

.A common way to improve the calculated picture's quality 
is cupersampling. This means that the ray-tracer gets more 
samples through a pixel and calculates the average of them 
to act the final color. This results in an anti-aliased picture, 
but the supersampling process virtually enlarges the picture 
size, which requires more rays.

Supersampling is most important at the edges of objects. 
If supersampling is used only at the edges, overall quality 
does not reduce much, but the vpeed gain is huge. In 4 
the white pixels are represent the region wherein we used 
supersampling.

To detect object switch we maintain a list of the objects 
that were visible m the previous line and a variable which 
stores the object of the previous pixel. With the.se two vari
ables we can determine the object switching both in hori
zontal and vertical direction. It there vvas a switch we spawn

Figure 4: Region o f interest in supersampling

4. Results und condusioies

The ray-tracer was tested on a system equipped w ith a Mo
torola G4 1.3GHz processor with I Gbyte ram. 'Fhe oper
ating system was Mac O.SX. The program compilled with 
the GNU OCC v4,0. 'Po measure performance wc used test 
scenes with 10. 1(X), 1000 and .30000 spheres. The material 
of the spheres had diffuse, specular, refieetive and refractive 
componeniis. All of the measurements were with 640 x 480 
picture size with ?'2bits color depth.

Figure 5: Example scene

Our te.siis showed that the most important optimization 
technique is the spatial subdivision. Using a KD-tree the ren
dering process is more than thousand times faster than the 
naive implementation in large scenes. W''ith using alternaiive 
entry points and ray beams we can easily dubble the perfor
mance. The vupersampling and importance sampling adds 
another ten percent performance boost. .See in table I.

167



Halázs Tóth/ RTKT vilit liiiafie Coherence

.Number of objects 10 1000 50000

Naive 2.2s 161.5s -

KD-tree 0.1s 3.3 s 6.3 s
• \lt. entry 0.05 s 1,1s 3.3s

All 0.03s 0.8s 2.8s

Table 1: Rendering times

5. Future works

To improve the performance of the ray-tracer system we 
have several ways. The most important part of this work to 
extend the hit search algorithm with a caching mechanism to 
speed up the tracing process of the secondary and the shadow 
rays. Less important but holds out a promise to adapt the ac
celeration tree building process to the needs of the alternative 
entry point algorithm. Despite the tree works well with this 
implementation, the used heuristics is designed for individi- 
ual rays and not for ray beams.

References

1. U. A.SS.AKSSON and T. Moller. Optimized view frus- 
irum culling algorithms for bounding boxes. \n Journal 
of Graphics Toois. ptiges 9- 22, 2000. ,i

2. Vlastimil Havran. Heuristic Ray Shooting Algorithms. 
Ph.d. thesis. Department of Computer Science and Kn- 
gineertng. Faculty of Electrical Engineering, Czech 
Technical University in Prague, .November 2000. 2

.'. .Mexander Reshetov, Alexei Soupikov, and Jim Flurley. 
Multi-level ray tractng algorithm. ,-lCM Trans. Graph.. 
24(3): 1176-1 185. 2005. 3

4. László S/.ecsi. ,\n effective implementation of the k-D 
tree, pages 315-326. Charles River .VIedia, Inc., 2003. 
2

5. L. Sztrmay-Kalos, V. Havran, B. Benedek, and 
L. Szécsi, On the efficiency of ray-shooling acceler
ation schemes. In Proc. Spring Conference on Com
puter Graphics ISCCG ’2002). pages 97-106. Come- 
nius University Press, 2002. 2

6. Ingo Wald. Realtime Ray Tracing and interactive 
Global Uiuminatiun. PhD thesis. Computer Graph
ics Group, .Saarland University, 2004. .Available at 
http://www.mpi-sb.mpg.de/'' wald/PhD/. 2

7. Turner Whitted. .An improved illuminatton model 
for shaded display. Communications of the .ACM, 
2,3(6):.34.3-."^49, June 1980. I

168

http://www.mpi-sb.mpg.de/''


Third Hungarian Conference on Computer Graphics and Geometry, Budapest 2005

A Real-Time Animation Engine for H-anim Characters

Zs. Ruttkay'’̂ , R. Vanca^

‘Information Technology Faculty, PPKE, Budapest, Hungary 
^Dept. of Computer Science, University of Twentc, The Netherlands 

‘Technical University of Budapest, Department o f Control Engineering and Information Technology

Abstract
We report on ongoing work to develop a character animation engine which can be used to control the 
motion o f  embodied conversational agents (ECAs). The major characteristics o f our envisioned engine are: 
real-time control allowing reactive and interactive behaviour; useable for any model defined according to 
the H-anim convention: interface for high-level behaviour control. In this paper we first outline the 
background o f the work. Then we explain in detail the principles and implementation details o f  the low- 
level, DirectX based animation engine. Finally we sketch further extensions and potential applications.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphies]; Animation

1. Introduction

An Embodied Conversational Agents (ECA) is a 
computer graphics model which looks like, more or 
less, as a person, and is capable to communicate by 
verbal and nonverbal modalities reminiscent of humans 
[3]. An ECA may act as an assistant, tutor, salesperson 
or psychologist, play in virtual theatres, stand for real 
people in teleconferencing or chat forums, translate 
written content to sign language for the hearing 
impaired, etc.

There is a need for a great variety of ECAs. One 
would not like to see the very same model in such 
different roles and applications. Besides the natural 
expectation to see a variety of virtual humans, it has 
been shown in scientific experiments that the design of 
an ECA have significant consequences on how people 
react to them [21]. This applies not only for the 
embodiment, but also for the subtle details of 
nonverbal communication of the ECA, such as hand 
gestures postures used [13]. Moreover, as there is not 
enough descriptive data on the characteristics of 
natural gesturing of people, an easy to tune virtual 
character should be used to evaluate and fine-tune the 
hand gestures of ECAs.

In spite of this quite natural expectation, the present 
practice falls short. One comes across the very same 
few models - the Greta model [10, 20] or the Yt 
model [2] - in many research groups and demo 
applications. If it is about commercial applications, 
then one has two choices:

Use a more or less task-tailored environment, with 
some different ECAs, with a given set of nonverbal 
gestures like certain facial expressions, pointing 
and beat hand gestures.
Use an expensive, general high-end animation tool 
like Maya or 3D Studio Max, requiring 
professional animator’s skill and possibly some 
patches to be used together with house-in tools..

In the ECA research community, it has been stated that 
a general platform would be needed [8], which makes 
it possible:

to author ECAs with different embodiments; 
to animate them, by re-using elements of an 
extensible nonverbal communication repertoire 
consisting of parameterized facial, hand and body 
gestures.

By the VRMLAVeb3D working group the H-Anim 
coding scheme was developed, to represent and 
animate synthetic characters [9]. While this effort is

169



Ruttkay and Vanca / Animation Engine for H-anim Characters

highly appreciated by the research community, there 
has not been break-through of the H-anim format as a 
de-facto standard. Commercial companies have been 
using their own, individual formats, without practical 
support for H-anim exportation. The set of models is 
the same handful ones which were created a few years 
ago [2].

There are recent initiatives by some researchers to 
develop and share reusable modules as building blocks 
for EGAs, see the Mindmakers platform [16] and the 
GALA forum [7].

Much work has been done on providing 
computational models and animation environments for 
faithful and expressive hand gestures [1, 5, 10, 11]. 
While the principles of modelling characteristics of 
human gestures can be adopted, these works each have 
an implementation with one character to be controlled, 
in some own format.

Our objectives are motivated by the above outlined 
shortcomings. Namely, we set out to develop a body- 
animation engine, which:

can be used with several EACs coded in some 
general body fonnat;
assumes the coding of animation is transparent and 
widely used format;
provides fast animation, leaving time for the 
processing of eventual reasoning on a higher-level 
behaviour planning;
assures absolute timing, not relative to the speed of 
the machine used for rendering the animation; 
provides good interface for eventual control of 
low-level details of the motion characteristics as 
well as to high-level behaviour control, such as 
scripted or intelligent, knowledge-based control.

Initially, we wanted to use the Greta body animation 
system [10], which does confirm to H-anim protocol. 
In Greta one may specify animation on a high level, in 
terms of marked up text, or on a body parameter level 
for each frame. Greta has its own scheduling and 
speech-alignment engine which bridges the gap 
between the two levels. We wanted to have control on 
an in-between level, that is on the level of gesture 
sequences, and in an interactive way. So we needed to 
produce our own engine for this purpose.

We also built on our earlier work on defining hand 
gestures and using those in the context of knowledge
base behavioural control an scripted control [22]. 
Particularly, in our earlier work we developed a 
framework where the ECA can be controlled marking 
up text to be uttered with gesture tags [18]. The

essential shortcoming with the real-time absolute 
control of the low-level animation provided in Java and 
VRML urged us to develop an own, in all details 
controllable animation engine.

In this paper we give an account on ongoing work 
to achieve these goals. We first introduce the H-anim 
animation principle of characters, and explain how 
hand gestures are defined in temis of unit motions. 
Then we introduce our player in detail, and its 
implementation in DirectX, also providing 
performance figures. Then we show how the animation 
engine was coupled with certain modules of the Greta 
system, responsible for scheduling nonverbal signals 
accompanying speech. We also explain another 
possible high-level scripting interface. Finally, we 
provide some data on performance. In the closing 
section, we outline further work to be done and an 
envisioned application.

2. Real-time animation

2.1 H-anim character animation

An H-anim character consists of a hierarchical 
structure of joints like shoulder, elbow, wrist; and body 
segments like upper arm, lower ann, connected by the 
joints. The joints have 1,2 or 3 degree of rotational 
freedom. The position of each joint is given with 
respect to the parent joint’s position, by a translation 
transformation. The structure is similar, more or less, 
to the structure of the human skeleton. A most detailed 
H-anim structure consists of 70 joints, models with less 
level of detail (LOA, Level Of Articulation) consist of 
only one joint, or the major joints but no finger joints. 
Joints have unique names.

The joints arc used as abstract elements to be 
rotated. What is to be seen, are the body segments, 
driven by the joints. A body segment may have 
different shape, from separate cylinders (resulting in 
stick figures) to high-density single polygon meshes, 
resulting in near-realistic looking body geometry. Each 
body segment, or vertex of the mesh in case of single
mesh body, is associated with a joint. The 
transformation prescribed for a joint gets applied to the 
associated body vertices, and the visible body part gets 
rotated. Further more, if a joint gets moved, all its 
children joints, in the hierarchy, get moved too. Hence 
the actual position of a body segment (e.g. pointing 
finger tip) is determined by the cumulated effect of the 
rotations of the ancestor joints. According to the H- 
anim convention, joint rotations are given in Euler 
angles.

170



Ruttkay and Vanca / Animation Engine for H-anim Characters

We are interested in motions of the ECA which have 
some (communicative or other) function, and thus a 
more or less strict morphology (unlike, e.g. a free 
dance movement performed.) That is, we are interested 
in hand- and body gestures which are performed in a 
similar form. E.g. to emphasize a piece of information, 
one uses so-called beats [4]; the hand moves down 
from the height of the shoulder to the height of the 
navel or lower, by rotating the lower arm. The hand 
shape may be pointing, or fist, or half bent, or open. 
When enumerating, similar beats are performed, but 
the hands show the appropriate number. A gymnastic 
exercise ‘gesture’ may involve the coordinated motion 
of several joints, may be distant in the joint hierarchy, 
involving e.g. arms and legs.

In our discussion, for simplicity we will use the 
term gesture for hand gestures. A hand gesture is 
coordinated motion of some joints which are used in 
more or less the same form, to express some meaning 
(in case of a chatting ECA), or to exercise some 
specific muscles (in case of a synthetic trainer) or 
perform some task (in case of an ECA as a cook or 
assembly instructor). However, much carry over to 
motions performed involving lower limbs and other 
joints. In this paper we concentrate on the morphology 
and performance of the gestures, about semantics, 
possible meanings and the origin of influences on the 
performance, see [14].

A simple gesture is defined by giving the start and 
end position (rotation) of all the joints involved. For 
the precise performance of the motion, it is also to be 
given how the joints rotate in time and space from the 
start to the end position. Linear interpolation results in 
robot-like motion. For more realistic motion 
dynamism, time curves have been suggested based on 
physiological and physical consideration, with ease-in 
and eeise-out periods [11].

For our discussion, we will refer to a start and an 
end configuration for a simple gesture. We assume that 
these two, together with some interpolation scheme, 
define the gesture. Note that, for the time being, we do 
not deal with, explicitly, the trajectory of the motion, it 
is to be determined by the kind of interpolation used to 
rotate the joints (e.g. the usual slerp, that is spherical 
linear interpolation). If some motion path (e.g. a wave
like curve) needs to be followed which would not 
result fi-om the interpolation, the gesture should be 
defined as compound, consisting of concatenated basic 
gestures. E.g. in case of a hand gesture of making a full 
circle, the start and end position are the same, so the 
interpolation would produce no motion at all. But one

can break the whole circle into quarter circles, which 
can be well defined by the interpolated rotation of 
joints. If a path is to be followed which cannot be 
generated as a sequence of curves of basic gestures, the 
path should be approximated, which is beyond the 
scope of this paper.

As of timing of the motion, it is often expressed in 
terms of the timing of the start and/or end positions; 
e.g. a beat should start together with the utterance of 
the word. It may be also required that the end of the 
beat (the time of the end position reached) coincides 
with the end of the emphasized word or phrase. If 
moving for music or counting, the start times of 
repetitive motions should coincide with the beats of the 
music or beginning of the counting words. So we 
define, in general, the morphology of a basic gesture by 
a triple <Csian. CEnd, InF>> where the first two items are 
vectors defining (relative) joint rotations for each 
joint, and the third item tells what type of interpolation 
is to be used. For complex gestures, a sequence of 
positions and interpolations are to be given: < Co, Ci, 
C2, ... Cn, Inti, Int2, ..., Int„ >. The actual duration of 
the motion is to be given at animation time, the same 
unit motion may be performed at dilferent tempo. Here 
we do not go into details of allowing default durations 
and prescribing constraints on durations, as 
characteristics of gestures.

2.2 The animation engine

We use DircctX’s animation framework for our engine. 
We choose DirectX [5] (instead of, e.g. OpenGL) for 
the following of reasons:

The .X file format for models used by DirectX is 
de-facto supported by most of the commercial 
character modelling tools (3D Studio Max, Maya, 
Poser).
DirectX has a rich set of fimetions and classes for 
manipulation, detailed animation and rendering of 
models.
These default functions can be over-defined, hence 
making it possible for specific, more sophisticated 

'  control.
It assures absolute timing between key poses (to be 
discussed later).
It runs fast, making best use of graphics cards.
It is compatible with respect to different hw and 
CPUs, and everything can be done using software 
processing only, even rendering (using the DirectX 
reference rasterizer, hence a special graphics card 
is not a must).

The animation engine’s task is to produce for each 
frame a set of joint rotations. It’s input is a sequence of

171



Ruttkay and Vanca / Animation Engine for H-anim Characters

Cj key positions corresponding to sequences of key 
positions in gestures (stored in an xml file in our so- 
called KFS format), with corresponding interpolation 
and timing information. The key positions are stored 
using a set of H-anim joint rotations represented in 
Euler angles. The engine loads the data, and builds an 
animation controller out of it. Our animation algorithm 
takes all the H-anim joints, and registers an SRT 
(Scale, Rotate, Translate) key for them. If a model 
doesn’t have some of the joints, they simply wont be 
animated by the controller, because it does not find 
them, so level of articulation (LOA) is handled 
without problems. The animation controller has built in 
interpolation routines (of an interpolator class, which 
uses linear interpolation by default), which produces 
the interim positions, one for each frame, between the 
key positions. The animation is synced to a real time 
clock. That is, the in-between frame frequency is 
dynamically adjusted according to the resources 
available till the next prescribed key frame. This 
mechanisms is the basis for absolute time control. So 
as far as the key frames can be rendered on time, the 
interpolated frames will not cause any performance 
problem known with other systems (time lag, not 
smooth animation). The output of the animation engine 
is a new state of the model for the frame (a set of joint 
rotations).

As the animation facilities of DirectX are not well- 
known and documented, we explain the details. 
Animation is done using DirectX’s built in animation 
controller and FrameHierarchy stmctures. We defined 
our own CAllocateHicrarchy class to be able to store 
other data than the default transformations (we want to 
store cumulated transformations too).We use this class 
for the frame hierarchy building and destroying. At the 
mesh loading stage we load the hierarchy from the file, 
and the animation if there is one. Later we calculate the 
combined transformations for every joint, and we set 
up the mesh for software skinning. In the SetCamera() 
function we advance the animation using the 
AdvanceAnimO function of the animation controller 
(to tell the controller that we want to step to the next 
frame), and we update the frame matrices according to 
the new keyframe. At the render stage we either call 
the DrawSkeletonO, or the DrawMeshContainer() 
function. The latter draws every frame’s mesh 
container, thus drawing the skinned mesh, the earlier 
one draws spheres in every jointlocation according to 
the actual joint transformation matrices. This is all 
done in the CRenderView class, in the LoadMesh(), 
SetCameraO, and OnRender() functions.

Finally, our rendering engine renders the new state to 
the screen. The rendering engine is based on DirectX 9. 
Below are the main steps:

Initialization steps (to be performed once):
DirectX Object creation.
DirectX Device creation.
Background creation (vertices and texture loading). 
Effect loading and compiling.
Mesh loading and corresponding processing 
(normals computing, bounding sphere computing 
etc.).
Frame hierarchy creation, and Animation loading if 
one exists in the .x file.
Skeleton Creation from mesh data.
Matrix initialization (view, projection, world).

Rendering steps (performed in loop):
Making adjustments based on external viewing 
commands like rotating, zooming.
Setting the camera properties and animation 
update.
Drawing the background, and skeleton or mesh of 
the character based on user choice.

2.3 Performance details

Our player uses DirectSD 9 for rendering, its shaders 
and the built in effect framework. Because of 
compatibility issues, we have software vertex 
processing (can be switched to hardware at the 
DdirectX device creation function), and software 
skinning. (Hardware skinning is not implemented yet). 
We provide two effect files for the player, a Shader 
Model 2.0 compliant one, and a Shader Model 1.1 
compliant one. Using the SM 1.1 version, the player is 
running on DirectX 8 compliant hardwaue, but one 
needs DirectX 9C installed for the program to run 
correctly. Our engine makes use of hardware 
acceleration when possible, mostly at the rendering 
stage, but we can also make use of hardware skinning 
in the future if its necessary for additional performance 
improvements.

Because of all the hardware acceleration that 
occurs, the engine is capable of around 500 Fps using a 
4400 vertex model (see Fig. 2), and around 400 Fps 
using a 11400 vertex model on a Pentium4 2.4Ghz, 
512MB Ram, and an Ati Radeon 9500Pro graphics 
card. This way we have a lot of resources left for e.g. 
own real time interpolation.

172



Ruttkay and Vanca / Aniraation Engine for H-anim Characters

2.4 Coupling the player with high-level control of 
Greta and GESTYLE

The Greta system is a complete character animation 
environment, used in several research environments 
[20, 10], It got the name from the unique female 
character which is animated. On the lowest level, both 
the face and body motion of Greta is expressed in 
terms of MPEG-4 parameters, and the original Greta 
player gets a sequence of such parameters, a set for 
each frame. Our own animation engine has specific 
characteristics with respect to the Greta engine, as 
reactive real-time control with interface on an 
intermediate level, and interface for any H-anim 
compliant model in .x format. To be able to use the 
high-level capabilities of Greta, we coupled our player 
with the user interface and motion scheduling modules 
of Greta. In this way, from a piece of text, marked up 
with tags indicating gestures to be performed, 
sequences of timed gestures are generated. The 
gestures occurring is mark-up tags should be from an 
earlier defined library of gestures. Eventual conflicts 
are resolved by the scheduler. The timing of the 
gestures is gained from the TTS engine Festival, which 
is an integrated module of Greta. The output is a 
.sequence corresponding to timed unit motions stored in 
KFS format as discussed above, which is further 
processed by our H-anim Player. The general 
architecture is given in Fig. 1.

When running our animation engine in 
combination with Greta, one can drive any H-anim 
character to converse with the user, profiting form the 
communicative hand gestures available in Greta and 
the its markup control language.

Originally, the sampling of joint parameters for each 
frame was done by a Greta module, and the Greta 
player was driven by sets of parameters for each frame. 
To modify timing or other performance characteristics 
of the gestures, the marked up text had to be re
processed, and new parameter sequence generated 
accordingly for the player. Our player, getting input on 
a higher level and being able to process them at a high 
speed, makes real-time modifications possible, which 
involve changing the timing parameters one by one.

The interface for our player allows, in principle, to 
couple it with other high-level schedulers which can 
provide output. Particularly, in a next round we will 
couple the player with our GESTYLE markup 
language, which does not have an own player neither 
model to drive, but from marked up te.xt input 
generates a timed sequence of gestures to be displayed 
by some player. Motion eharacteristics of gestures of

the EGA as a permanent (e.g. trembling motion due to 
age) or temporal feature (in sad state, thus all gestures 
slowed down and performed with less energy) may be 
prescribed, and GESTYLE provides output 
accordingly, expressed in fizrther parameters of 
gestures as noise, intensify, time dynamism etc. We 
plan to exploit the open animation functions and fast 
performance of the DirectX player to deal with these 
subtle details.

3 Discussion

3.1 Summary of our work

We have developed a character animation engine based 
on DirectX, which takes some timed key positions of 
joints according to H-anim standard, and interpolation 
scheme between them, and generates the animation in 
real-time, accordingly. The player is fast, can produce 
500 fps. Thus there is time left to do further processing 
within response time. This opens possibilities for 
reactive animation and animation with subtle motion 
characteristics according to (changing) emotional state 
of the character.

3.2 Further issues

We are eager to use our engine with a variety of H- 
anim compliant bodies. Recently, and VizX3d [23] 
have improved their character modelling tool with 
respect to .x and H-anim exportation. Thus we hope to 
be able to use different characters for different 
applications and users, with the same platform. This 
asks for designing gesture libraries and principles of 
adaptation of them for H-anim characters with different 
geometry. Related to this, we wish to include inverse 
kinematics [12], which would be useful for defining 
key positions in terms of reference points on and 
around the body (e.g. touch with left hand right knee).

The major motivation for our engine was reactive 
animation. Ultimately, we would like to have an EGA 
which can generate motion on the fly, as reaction to 
perceived state o f the user and other environmental 
signals. Particularly, we are interested in adjusting 
tempo and intensity of animation according to music, 
counting or the motion of a real person. We would like 
to develop a synthetic trainer, who can monitor the 
performance of the trained used, and fine-tune and 
even re-schedule his own motions according to the 
physical state and performance of the user.

173



Ruttkay and Vanca / Animation Engine for H-anim Characters

Figure ]: The architecture of our DXP H-anim player, with interfaces to the Greta or GESTYLE modules.

• ■ - m  i

i f  f
f ' .  ■

% , :

Figure 2: An H-anim character animated by the DVX engine. The model is the demo one provided with DirectX. SDK.

174



Ruttkay and Vanca / Animation Engine for H-anim Characters

Acknowledgement

Wc thank Catherine Pelachaud for providing us her 
Greta system, and for discussions on its facilities. We 
are grateful for the help of Maurizio Mancini 
concerning format and programming details of Greta. 
The work was done while the first author was benefiting 
from the Szent-Györgyi Fellowship of the Hungarian 
Ministry of Education.

Bibliography

2.

3.

5.

Ni Badler, R. Bindiganavale, J. Allbeck, W. 
Schuler, L. Zhao, and M. Palmer. Parameterized 
action representation for virtual human agents. In: . 
Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.): 
Embodied Conversational Agents, MIT Press, 
Cambridge, MA. 2000.
Beitler, M. H-Anim 1.1 Compliant VRML97 
Humanoid Models,
http://www.cis.upenn.edu/~beitler/hanim/
J. Cassell, J. Sullivan, S. Prevost, E. Churchill 
(Eds.): Embodied Conversational Agents, MIT 
Press, Cambridge, MA. 2000.
J. Cassell, H. Vilhj'almsson, and T. Bickmore. 
BEAT: the behavior expression animation toolkit, in 
computer graphics proceedings. Annual Conference 
Series. ACM SIGGRAPH, 2001.
D. M. Chi, M. Costa, L. Zhao, N. I. Badler: The 
EMOTE model for effort and shape. Computer 
Graphics Proceedings, Annual Conference Series, 
ACM SIGGRAPH, 2000. pp 173-182.
DirectX Graphics Documentation:
http://msdn.microsofl.com/library/default.asp7urWl 
ibrary/cn-
us/directx9c/directx/graphics/dxgraphics.asp 
GALA; http://hmi.ewi.utwente.nl/gala/
J. Gratch, J. Rickel, E. Andre, N. Badler, J. Cassell 
and E. Petajan. "Creating interactive virtual humans: 
Some assembly required." IEEE Intelligent Systems, 
2002
H-anim: http://www.h-anim.org/

10. B. Hartmann, M. Mancini, C. Pelachaud: 
Formational parameters and adaptive prototype 
instantiation for MPEG-4 compliant gesture 
synthesis, Proc. of Computer Animation, Geneva, 
June 2002.

11. S. Kopp, I. Wachsmuth.: Planning and motion 
control: in lifelike gesture: A refined approach. In 
Proc. of Computer Animation, 2000. pp 92-97.

12. Y. Liu, N. Badler: Real-time reach planning for 
animated characters using hardware acceleration." 
Computer Animation and Social Agents, IEEE 
Computer Society, New Brunswick, NJ, May 2003, 
pp. 86-93.

9.

13. J.-C., Martin, S. Buisine, S., Abrilian: 2D gestural 
and multimodal behavior of users interacting with 
embodied agents. Proc. of the workshop "Embodied 
Conversational Agents: Balanced Perception and 
Action", of AAMAS04, New York, USA, 2004.pp. 
34-41.

14. D. McNeill: Hand and Mind: What Gestures Reveal 
about Thought. University of Chicago, 1992.

15. Microsoft DirectX:
http://www.microsoft.com/windows/directx/default. 
aspx

16. Mindmakers: http://www.mindmakers.org/
17. MPEG-4: Overview of the MPEG-4 Standard. 

ISO/IEC JTC1/SC29/WG11 N4668, March 2002, 
http://mpeg.telecomitalialab.com/standards/mpeg- 
4/mpeg-4.htm

18. H. Noot, Zs. Ruttkay: Style in gesture, In: A. 
Camurri, G. Volpe (Eds.), Gesture-Based 
Communication in Human-Computer Interaction, 
LNCS 2915, Springer-Verlag, 2004.

19. DirectX Vertex shader: http://msdn.microsoft.com/ 
msdnmag/issues/01 /06/Matrix/

20. S. Pasquariello, and C. Pelachaud, "Greta: a simple 
facial animation engine," Proc. 6th Online World 
Conf. Soft Computing in Industrial Applications, 
Springer-Verlag, 2001.

21. Zs. Ruttkay, C. Pelachaud (Eds): From Brows to 
Trust -  Evaluationg ECAs, Kluwer, 2004.

22. Zs. Ruttkay, Z. Huang, A. Eliens: The Conductor: 
Gestures for embodied agents with logic 
programming, Proc. of the 2"** Hungarian Computer 
Graphics Conference, Budapest, 2003. pp. 9-16.

23. VizX3d: www.vizx3d.com

175

http://www.cis.upenn.edu/~beitler/hanim/
http://msdn.microsofl.com/library/default.asp7urWl
http://hmi.ewi.utwente.nl/gala/
http://www.h-anim.org/
http://www.microsoft.com/windows/directx/default
http://www.mindmakers.org/
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm
http://msdn.microsoft.com/
http://www.vizx3d.com


rh ird Hungarian Conference on Computer Graphics and Geometry, Budapest 2005

Computer framework for organizing 3-dimensional graphical 
environment in image-guided planning and navigation

F. Pongrácz and Z. Bárdosi

Computer Automation and Research Institute, Budapest, Hungary

Abstract
Our goal is to develop a general-purpose interactive software module for run-time planning and execution o f several (surgical) 
planning and navigational tasks. The software module has the capability to interactively create and modify the internal, coded 
representation o f a virtual graphical environment which visualized and compared to real images of anatomical objects. The .suitable 
organization o f this 3-dimensional virtual environment is based on procedures known from data manipulation in tree structures of 
nodal topology. Using this module we are able to create and simulate complex models o f several navigational and measurement teaks 
occuring in clinical field (movement analysis, registration o f 3D space o f motion trackers, frameless stereotactic navigation, sen.sor- 
based calibrations o f surgical tools, trajectory tracking, etc.}.

Keywords: 3D virtual environment, nodal topology, image-guided planning, motion tracking.

1. Introduction

We developed a framework to organize the 3-dimensional 
graphical environment in those applications which integrate large 
number of graphical elements, cameras and motion trackers. 
This environment is very common in the medical field of image- 
guided surgery planning and navigation which is getting less 
manageable with the increasing complexity and versatility of 
surgical tasks. Different 3D elements, supplemented by 6-degree 
of freedom floating sensors of an optical motion tracker and a 
variety of 3D cameras were organized into a hierarchiai tree 
stmeture. The 3D cameras arc referred as viewers which 
represent different diagnostic viewing and rendering of a 
volumetric model. The volumetric models are computed fixtm 
CT (computer tomographic) or MR (magnetic resonance) image 
sequences [6]. The proposed hierarchiai tree struemre [for 
description of container class see 5] and its specialized 
functionality collectively shape up the virtual environment which 
is visualized and compared to the real images of body parts in 
patients.

Similar approach to design software architecture for 
surgical planning has been already described in [3] with some 
differences to our application. The system developed in [3] has 
the same nodal topology to build up the graphical environment 
but it does not integrate important elements into the topology 
(registration objects, sensor-based tool calibrations). On the 
other hand they are able to add video cameras very efficiently 
(for instance with special distorter functionalities). An open 
source toolkit is under development which uses a top-down 
approach from Problem Specification to Software Design but 
without clear strategy for a generic 3D topological organization 
of the problems [4]. The package is based on VTK and ITK 
open source libraries and called “The Image-Guided Software 
Toolkit” or IGSTK. Modularity is common in software for 
surgery planning where several graphical elements should be 
manipulated separately[8]. Others realised that standardized 
frameworks are needed to bring the actual computer-aided pre- 
operative planning scheme into the operating room [1,2]. We 
also accept this argument by creating one single software 
environment for both the preoperative planning process and the 
intra-operative intervention.

2. Navigation objects

The navigation tree is a hierarchical tree stmeture containing all 
the navigation objects existing in the 3D space of navigation. 
These objects can be of many types but their common properties 
are that they all have their local coordinate system. This 
coordinate system is defined by its position and orientation 
relative to parent’s space giving to all objects of navigation space 
the 6 degrees of freedom. This nodal hierarchy gives the ability 
to efficiently determine the linear transformations between two 
navigation objects and this structure can be altered interactively. 
Several types of objects can be added to the navigation tree: 
volume and mesh objects can represent real objects (i.e. 
volumetric objects can represent the CT/MR scans of the patient 
while 3D meshes can create virtual versions of implants), 
geometrical features like points, lines, paths, coordinate systems, 
3D models of tools can help to visualize the scene better. The 
transformation rales are defined between the local space and 
parent’s space according to the floating axis Euler convention 
(Figure 1).

Figure 1. 3D local space o f navigation object within its parent’s 
space.

176



Pongrácz, Bárdost /  Computer framework fo r  organtztng 3-dtmenstonal graphtcal envtronment

Each navigation object stores the 3 translational values (xl, ya 
Zt) and 3 Euler angles for orientation ( Azimuth, 0  = 
Elevation, 0  = Roll). Transformation (T) is calculated from

local to parent’s space with position and orientation values 
defined relative to the parent’s space:

T =

cos'Fcos© cos0sin4' -sin0 0
-cos<5sin4 -̂bsin<l)sin0cos4' cosOcos'F + sinOsin0sin ‘P sinOcos0 0
sin^sin<l)-bcos4>sin0cos'P -sin'^cos'P+cosOsin0sin'P cosOcos0 0

J l 1

Eq.I

The floating X axis orientation of the local space is calculated 
by sequential rotations with (H',0,0). Each navigation object 
can be locally positioned and reoriented and in the same time 
appears as an element of nested transformations in the tree. An 
update of conversion between matrix (T) and {xy yu Zu

%Q,0) values validates the user interaction. The conversion 
between the 3x3 rotation submatrix of T and the Euler angles is 
given by:

ce>0:  *? = arctan ,̂2 /7J,) 0  = arctan(-7^3/ce) ® =arctan7’23/7’33)
c e  =  0 (7 ]3  <  O ) : ' F  =  0  Q  =  7t / 2  0  =  a r c t a r i( 7 ’2,

c e  =  0 ( r , 3 > 0 ) :  T  =  0  Q  =  - 7 t / 2  ^ ^ a T c t a r { - T ^ ^ / T ^ 2 )

Eq.2

The next navigation objects are derived from the ancestor object:
• Volume navigation object represents the CT or MR 

image scans and the related volumetric models. The 
resampled imaging data can be visualized with Slice 
Viewer objects or, after rendering, with Base Viewer 
objects. Unique feature of the Volume object is that 
it can be registered from a moveable reference space 
(sensor space attached to the volume) or from the 
global space of the motion tracker.

• Slicc Viewer object gives a chance to view the image 
slices of the Volume object. Slice Viewer can be 
configured to look at the Volume object from 
predefined view directions (axial, lateral, frontal). 
This viewer may contain visible graphical elements 
with feature points for selection and manipulation. 
The Slice Viewer objects are located in the tree 
topology under their source volume (i.e. Volume 
object created from CT or MR data).

•  Base Viewer object represents a generic camera 
which can be located with any position/orientation in 
the navigation environment. This viewer shows all 
navigation objects wich have the visibility flag on. It 
also displays the Volume object if the rendered 
surface data are available in 3D.

•  Coordinate System object creates a coordinate 
system which can be translated and rotated about any 
axis by means of its projection in any Viewers.

•  Point, Line navigation objects represent simple 
graphical elements which can be used for 3D 
measurements or for marking targets and directions in 
surgical planning.

• Surface Model objects help to add predefined 
surface mesh, as navigated object to the scene. This 
model can be the reconstruction of different implants 
or tools in standard surface formats (VTK, binary 
STL).

•  Drill navigation object locates a drill in the 
environment which has a motion sensor attached and

calibrated to the tip location and orientation. The 
configuration dialog controls the calculations which 
include SVD-based least-square estimations for tip 
offset and axis direction.
Mover navigation object represents the sensor of an 
optical motion tracker. Movers can be added to any 
position in the tree but their global location and 
orientation remain always at the detected values (their 
local coordinates and angles are compensated for 
movement). The local objects within the space of a 
Mover are the navigated objects with adjustable 
translation and rotation parameters relative to the 
Mover.
Registration object is added automatically to the tree 
after the succesful registration to Volume object has 
been found. The Registration object implements 4 
points rigid body algorithm!?] and stores the marker 
positions and the registration matrix.

3. Navigation tree and transformation rules

Figure 2 summarizes the basic topology of the hierarchiai tree 
structure for graphical planning without adding any elements of 
motion tracking.

3.1 Transformation between local spaces

The tree structure incorporates nested 3D coordinate spaces 
where the calculation of transformation matrices is based on 
relative location and orientation of two, topologically close 
parent-child spaces. Consecutive matrix multiplications 
determine the transformation from an arbitrary space to any 
other, topologically distant space. Because of branching in nodal 
structure, the multiple transformation is done through the global 
or World space or through the closest branching node if it is 
different from the World node:

177



Pongrácz, Bárdosi /  Computer framework fo r  organizing 3-dimensional graphical environment

Eq.3

The matrix elements from child to parent transformation (T,.i./) 
are calculated according to Eq. I and indices k and i represent the 
number of intermediate nodes to the World node (denoted by W). 
The important functionality of tree topology is the easy handling 
of element relocation. However, in our case, two possible 
consequences of relocation should be considered: (A) the 
relocated tree clement preserves the local position/orientation to 
its parent or (B) it keeps the global location/orientation relative 
to the World .space. The second case is implemented by the 
Global Lock feature which is important in motion analysis. 
Motion path of navigated elements should be viewed relative to 
different reference spaces but keeping the global position and

orientation unchanged. The element relocation after setting 
Global Ixx;k to ON is driven by next equation:

Eq.4

where T/j represents the new transformation of the relocated ith 
local space to its new parent, the yth space in the tree. Eq.2 is 
used to get the local orientation parameters, the local translation 
coordinates are directly related to the matrix elements.

3,2 Adding motion sensors (Movers) to tire tree

Mover objects are the abstract representations of sensors of the 
optical motion tracker (Polaris, Northern Digital in this study). 
In the configuration dialog of Movers the user can select the 
actual sensor providing input data. Movers can be placed 
anywhere in the tree (Figure 3). However, all related sensors 
will be in Global Lock mode which needs a continuous update of 
their local position and orientation values as a function of their 
global parameters (see Eq.4 and Eq.2).

Several types of Navigation objects can be attached to 
Movers: Volume, different graphical elements, local spaces, 
surface models etc. The attached sensor’s space usually doesn’t 
fit with the coordinate space of the Navigated object. Therefore, 
all cases need special registration (for Volume) or calibration 
procedures (in case of pointer, tools, moveable local spaces).

Volume registration inserts a Registration object between the 
Volume Sensor (as reference Mover) and the registered Volume 
with optionally attached marker positions. The marker positions 
are transformed from the reference Mover’s space with the 
registration matrix.

With the proposed approach one can easily switch 
between reference Movers that is important in clinical motion 
tracking and tool navigation. Reference Mover is a sensor which 
is attached to a moving object that permits 3D stereotactic 
analysis relative to this moving object. In our case (Figure 3) 
the Volume Sensor and the Local Sensor can be considered as 
reference Movers which are attached to different moveable body 
parts. The Global Lock feature permits the reference Mover 
switching by keeping the Global location and orientation 
unchanged for Navigation object.

i
i

I

I

178



Pongrácz, Bárdosi /  Computer framework fo r organizing 3-dimensional graphical environment

I

Figure 3. Hierarchical tree for building up graphical environment in surgical navigation. Reference sensor and pointer are added for 
Volume registration. Tool sensors are included fu r surgical tool tracking and implant navigation. Local sensor with attached 
anatomical coordinate space can he used to follow body part’s movement.

4. Software implementation

The proposed navigation framework was implemented in a 
software performing several medical image processing tasks 
(viewing CT/MR data, image fusion, manipulation of polygonal 
surface mesh of vtk or binary stl formats and communication 
with optical motion tracker) (Figure 4). Following a panel 
structure the Navigation panel can utilize the output of the 
calculations performedi in other modules. For instance the Image 
Fusion panel can provide for transformation matrix between two 
volumes of the same u* different modalities. This way a second 
Volume object can be inserted into the Navigation tree without 
duplicating the effort fór registration of the 3D space of a motion 
sensor.

During implementation several functionalities were 
added to the classes representing the Navigation objects. These 
objects have generic and special parameters which can be 
configured individually. The generic parameters are the local 
position/orientation values and tlie Global Lock and visibility 
flags. In some cases (he Navigation object may have other 
embedded objects like (he point markers in the Registration 
object. Similar embedded objects are the so called Features like

the endpoints of a Line object which can be reached by hittests in 
Viewers. After adding a Navigation object to the tree its 
configuration and appearence (selection of a window slot for a 
Viewer, adding regisfration to Volume) can be initiated by 
context menus. Calibration procedures for drill and moveable 
local (anatomical) spaces can be initiated from their 
configuration dialog.

Important elements in the software are the Observer 
slots which can be defined for any Navigation object. These 
Observer slots numerically display certain 3D relationships 
between the selected object and the Global space or any other 
object in the tree. For now the.se relationships can be the relative 
coordinates, relative Euler angles and 3D distances.

5. Conclusion

A general purpose software framework has been developed 
which is usable to solve 3D graphical planning for surgical 
planning and navigation. The presented methodology adopts the 
known rules of nodal topology in hierarchical tree stmetures and 
converts those into the practice of software design in medical 
field.

179



Pongrácz. Bárdosi /  Computer framework fo r  organizing .^-dimensional graphical environment

g B Ü S M E S a
File V

CT/MR I Irnaoe Fusion | Implan* \ Reaii.-tfaUon N avjgaiiqn

m
NAME:X*Y M 95204091

3D Space

sensor_1 I'Mover)

.d

(Slice Viewia)

'iiatsce (B.ise viewer] 
iaterd (Slice Vipgwed 
ffc-nia) (Sii'ceViewei) 

Registi-ation (Unkniiwrii 
8  sen$oi_2tMovefj

pointei_tip (Poirrt) 

tip_ jpace iC o o fd m te  Si'stemj 

9: iensor_3 [MiDver} 

ijriHlOrdf)
;en$oi_4 (Mover]

fmpiant (Sudace Mc<del)

driii|drill;3D Space]
Pos: ]X:-77.33, Y: 132.05. Z; 1197.01] 
Ofi: ]Az: 109.87, El: -29.37, Ro: 5.361
potntcr[pDíntcr (ip;3D Space]
Pcs: p<: 1151.40, Y: 165,32, Z: -1918.32] 
Ori: ]Az: 92,62, El: 5.33, Ro: 110,21]

' A -  ■ !■

rejati'v(lmptant;drni]
Pos: p<: -2.46. Y: 58.97, Z: -17.28]

-148.65, Ei: -1.97, Ro:-133.24)

Start O i^bzei ( Digitize (nvaTid

Figure 4. Txpical window i>}'the pro^nun designed fo r  solving surgicai planning and naugution tasks. The original MR scan of 
cadaver knee (upper left Viewert www reformatted ami displayed in different Slice Viewers. The rendered i.sosurfaee is shown in the 
honom right Base Viewer. The kierarchuil topology o f graphical elements was set up in a navigation tree (right, upper part o f the 
window). vtk surface representing an implant was added lo the topology. The Observer slots are shown on the lower right part.

Acknowledgement

Thi.s project was supported iby the hungarian research gram 
NKhP/1 B/(K)09/2002. The juthors thank to G. Renner, G. 
Krakovits and Gy. .S.'ánfó for helpful di.scu.ssions during this 
work.

References

i. F. Keeve. T. Jansen, Z. KroS. L. Kilter, B. Rynion-Llpjnski. 
R. .Sader. HF, ZeilhoE'er amd P. Zerra.ss. "JULIU.S - A n  
Extendable .Software Praivuevv̂ D̂-k. for Surgical Planning and 
Iruage-Guided N av ig a tii 'i i id* Prnceeditu^s oj MlCCAi 20 0 i. 
Utrecht. The Netherlands, Octebet 14-17. 20ÜL

T P. Golland. R. KikiiikS. C. Uinans. M. Halle. ,V1.H. Shenton. 
J.A. Richoll. "AnatomyBrowseir: .A Framework for integration of 
-Medical Information.' h* Proceedings o f MICC.MVH. 
Cambridge. ,MA. 1998. pp.^20-7.^L

W.Freysinger. M..I. Trupp«e. A  R . Gunkei. W.F. Thumfart. "A 
Full ,'D-Navjgation S\stem iii) a Suitcase'’. Computer Aided 
'^Ufger\. Vol.6. 2001. pp.8.‘'-9.T

4. K. Cleary. L. Ibanez. S. Ranjan. B. Blake. "IGSTK: .A 
Soitware Toolkit for Image-Guided Surgery .Applications'. In 
Proi eedings of CARS 20(J4. Chicago. International Congress 
Series 1268. 2004, pp. 473-479.

.'s, K. Peeters. “iree.hh 2.0. an 
irees. templated over the

.STL-like container class for ri-ary 
data stored at the nodes". 

iiitp:/./www.damtp.cum.ae.uk/user/kn229/iree/. Open Source 
Under GNU General Public License.

6. F. Pongrácz. G.Renner, "Volume and surface models from 
CT/MR images." In: Képfeldolgozók és Alakfelismerók IV. 
Kunferenadja iLds. Gácsi. Z.. Barköczy. P.. Sárközi. G.). 
-Vtiskolc-Tapolca. 2004 jan.28-30. pp.244-231.

7. K.S.,Arun. T.S.Huang. S.D.BIostein. "Least-.Squares Fitting of 
Two 3-D Point Sets". IEEE Trans. Pattern A/uUvsis and 
Maehine Intelligence. Vol.9,1987. pp.698-700.

8. K.Olle. B. Erdóheiyi. A. Kuba. E. Varga and Cs. Halmai. 
".VledEdit; .Műtéti tervezést .^egitö orvosi képfeldolgozó 
rendszer". In: Képfeldolgozók és Alakfelismerők IV. 
Konferencidja 'Eds. Gácsi. / ... Barkvk/y. P.. Sárközi. G.j, 
Miskolc-Tapolca. 2004 jun.28-30. pp.221-226.

180

http://www.damtp.cum.ae.uk/user/kn229/iree/



